Optimal. Leaf size=18 \[ -\frac {e^{-4 x^2} x^4}{\log ^2(-3+x)} \]
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-4 x^2} \left (2 x^4+\left (12 x^3-4 x^4-24 x^5+8 x^6\right ) \log (-3+x)\right )}{(-3+x) \log ^3(-3+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{-4 x^2} x^4}{(-3+x) \log ^3(-3+x)}+\frac {4 e^{-4 x^2} x^3 \left (-1+2 x^2\right )}{\log ^2(-3+x)}\right ) \, dx\\ &=2 \int \frac {e^{-4 x^2} x^4}{(-3+x) \log ^3(-3+x)} \, dx+4 \int \frac {e^{-4 x^2} x^3 \left (-1+2 x^2\right )}{\log ^2(-3+x)} \, dx\\ &=2 \int \left (\frac {27 e^{-4 x^2}}{\log ^3(-3+x)}+\frac {81 e^{-4 x^2}}{(-3+x) \log ^3(-3+x)}+\frac {9 e^{-4 x^2} x}{\log ^3(-3+x)}+\frac {3 e^{-4 x^2} x^2}{\log ^3(-3+x)}+\frac {e^{-4 x^2} x^3}{\log ^3(-3+x)}\right ) \, dx+4 \int \left (\frac {459 e^{-4 x^2}}{\log ^2(-3+x)}+\frac {783 e^{-4 x^2} (-3+x)}{\log ^2(-3+x)}+\frac {531 e^{-4 x^2} (-3+x)^2}{\log ^2(-3+x)}+\frac {179 e^{-4 x^2} (-3+x)^3}{\log ^2(-3+x)}+\frac {30 e^{-4 x^2} (-3+x)^4}{\log ^2(-3+x)}+\frac {2 e^{-4 x^2} (-3+x)^5}{\log ^2(-3+x)}\right ) \, dx\\ &=2 \int \frac {e^{-4 x^2} x^3}{\log ^3(-3+x)} \, dx+6 \int \frac {e^{-4 x^2} x^2}{\log ^3(-3+x)} \, dx+8 \int \frac {e^{-4 x^2} (-3+x)^5}{\log ^2(-3+x)} \, dx+18 \int \frac {e^{-4 x^2} x}{\log ^3(-3+x)} \, dx+54 \int \frac {e^{-4 x^2}}{\log ^3(-3+x)} \, dx+120 \int \frac {e^{-4 x^2} (-3+x)^4}{\log ^2(-3+x)} \, dx+162 \int \frac {e^{-4 x^2}}{(-3+x) \log ^3(-3+x)} \, dx+716 \int \frac {e^{-4 x^2} (-3+x)^3}{\log ^2(-3+x)} \, dx+1836 \int \frac {e^{-4 x^2}}{\log ^2(-3+x)} \, dx+2124 \int \frac {e^{-4 x^2} (-3+x)^2}{\log ^2(-3+x)} \, dx+3132 \int \frac {e^{-4 x^2} (-3+x)}{\log ^2(-3+x)} \, dx\\ &=2 \int \left (\frac {27 e^{-4 x^2}}{\log ^3(-3+x)}+\frac {27 e^{-4 x^2} (-3+x)}{\log ^3(-3+x)}+\frac {9 e^{-4 x^2} (-3+x)^2}{\log ^3(-3+x)}+\frac {e^{-4 x^2} (-3+x)^3}{\log ^3(-3+x)}\right ) \, dx+6 \int \left (\frac {9 e^{-4 x^2}}{\log ^3(-3+x)}+\frac {6 e^{-4 x^2} (-3+x)}{\log ^3(-3+x)}+\frac {e^{-4 x^2} (-3+x)^2}{\log ^3(-3+x)}\right ) \, dx+8 \int \frac {e^{-4 x^2} (-3+x)^5}{\log ^2(-3+x)} \, dx+18 \int \left (\frac {3 e^{-4 x^2}}{\log ^3(-3+x)}+\frac {e^{-4 x^2} (-3+x)}{\log ^3(-3+x)}\right ) \, dx+54 \int \frac {e^{-4 x^2}}{\log ^3(-3+x)} \, dx+120 \int \frac {e^{-4 x^2} (-3+x)^4}{\log ^2(-3+x)} \, dx+162 \int \frac {e^{-4 x^2}}{(-3+x) \log ^3(-3+x)} \, dx+716 \int \frac {e^{-4 x^2} (-3+x)^3}{\log ^2(-3+x)} \, dx+1836 \int \frac {e^{-4 x^2}}{\log ^2(-3+x)} \, dx+2124 \int \frac {e^{-4 x^2} (-3+x)^2}{\log ^2(-3+x)} \, dx+3132 \int \frac {e^{-4 x^2} (-3+x)}{\log ^2(-3+x)} \, dx\\ &=2 \int \frac {e^{-4 x^2} (-3+x)^3}{\log ^3(-3+x)} \, dx+6 \int \frac {e^{-4 x^2} (-3+x)^2}{\log ^3(-3+x)} \, dx+8 \int \frac {e^{-4 x^2} (-3+x)^5}{\log ^2(-3+x)} \, dx+18 \int \frac {e^{-4 x^2} (-3+x)}{\log ^3(-3+x)} \, dx+18 \int \frac {e^{-4 x^2} (-3+x)^2}{\log ^3(-3+x)} \, dx+36 \int \frac {e^{-4 x^2} (-3+x)}{\log ^3(-3+x)} \, dx+4 \left (54 \int \frac {e^{-4 x^2}}{\log ^3(-3+x)} \, dx\right )+54 \int \frac {e^{-4 x^2} (-3+x)}{\log ^3(-3+x)} \, dx+120 \int \frac {e^{-4 x^2} (-3+x)^4}{\log ^2(-3+x)} \, dx+162 \int \frac {e^{-4 x^2}}{(-3+x) \log ^3(-3+x)} \, dx+716 \int \frac {e^{-4 x^2} (-3+x)^3}{\log ^2(-3+x)} \, dx+1836 \int \frac {e^{-4 x^2}}{\log ^2(-3+x)} \, dx+2124 \int \frac {e^{-4 x^2} (-3+x)^2}{\log ^2(-3+x)} \, dx+3132 \int \frac {e^{-4 x^2} (-3+x)}{\log ^2(-3+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.78, size = 18, normalized size = 1.00 \begin {gather*} -\frac {e^{-4 x^2} x^4}{\log ^2(-3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 17, normalized size = 0.94 \begin {gather*} -\frac {x^{4} e^{\left (-4 \, x^{2}\right )}}{\log \left (x - 3\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 17, normalized size = 0.94 \begin {gather*} -\frac {x^{4} e^{\left (-4 \, x^{2}\right )}}{\log \left (x - 3\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 18, normalized size = 1.00
method | result | size |
risch | \(-\frac {x^{4} {\mathrm e}^{-4 x^{2}}}{\ln \left (x -3\right )^{2}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 17, normalized size = 0.94 \begin {gather*} -\frac {x^{4} e^{\left (-4 \, x^{2}\right )}}{\log \left (x - 3\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 17, normalized size = 0.94 \begin {gather*} -\frac {x^4\,{\mathrm {e}}^{-4\,x^2}}{{\ln \left (x-3\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 17, normalized size = 0.94 \begin {gather*} - \frac {x^{4} e^{- 4 x^{2}}}{\log {\left (x - 3 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________