Optimal. Leaf size=24 \[ \frac {x}{4}+5 \log \left (\frac {-5+e^{2+x}}{x^2}\right )-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 10, number of rules used = 8, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {6741, 12, 6742, 2282, 36, 31, 29, 43} \begin {gather*} \frac {x}{4}+5 \log \left (5-e^{x+2}\right )-11 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 43
Rule 2282
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-220+5 x-e^{2+x} (-44+21 x)}{4 \left (5-e^{2+x}\right ) x} \, dx\\ &=\frac {1}{4} \int \frac {-220+5 x-e^{2+x} (-44+21 x)}{\left (5-e^{2+x}\right ) x} \, dx\\ &=\frac {1}{4} \int \left (\frac {100}{-5+e^{2+x}}+\frac {-44+21 x}{x}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-44+21 x}{x} \, dx+25 \int \frac {1}{-5+e^{2+x}} \, dx\\ &=\frac {1}{4} \int \left (21-\frac {44}{x}\right ) \, dx+25 \operatorname {Subst}\left (\int \frac {1}{(-5+x) x} \, dx,x,e^{2+x}\right )\\ &=\frac {21 x}{4}-11 \log (x)+5 \operatorname {Subst}\left (\int \frac {1}{-5+x} \, dx,x,e^{2+x}\right )-5 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2+x}\right )\\ &=\frac {x}{4}+5 \log \left (5-e^{2+x}\right )-11 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 0.92 \begin {gather*} \frac {x}{4}+5 \log \left (5-e^{2+x}\right )-11 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 17, normalized size = 0.71 \begin {gather*} \frac {1}{4} \, x - 11 \, \log \relax (x) + 5 \, \log \left (e^{\left (x + 2\right )} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 17, normalized size = 0.71 \begin {gather*} \frac {1}{4} \, x - 11 \, \log \relax (x) + 5 \, \log \left (e^{\left (x + 2\right )} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 18, normalized size = 0.75
method | result | size |
norman | \(\frac {x}{4}-11 \ln \relax (x )+5 \ln \left ({\mathrm e}^{2+x}-5\right )\) | \(18\) |
risch | \(\frac {x}{4}-11 \ln \relax (x )-10+5 \ln \left ({\mathrm e}^{2+x}-5\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 0.83 \begin {gather*} \frac {1}{4} \, x + 5 \, \log \left ({\left (e^{\left (x + 2\right )} - 5\right )} e^{\left (-2\right )}\right ) - 11 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.75 \begin {gather*} \frac {x}{4}+5\,\ln \left ({\mathrm {e}}^2\,{\mathrm {e}}^x-5\right )-11\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.71 \begin {gather*} \frac {x}{4} - 11 \log {\relax (x )} + 5 \log {\left (e^{x + 2} - 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________