Optimal. Leaf size=35 \[ \frac {1}{16} \left (2-e^x-\frac {\log (2)}{\frac {4}{x}+x}+\log \left (e^5+\log \left (\frac {x}{4}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16+8 x^2+x^4+e^{5+x} \left (-16 x-8 x^3-x^5\right )+e^5 \left (-4 x+x^3\right ) \log (2)+\left (e^x \left (-16 x-8 x^3-x^5\right )+\left (-4 x+x^3\right ) \log (2)\right ) \log \left (\frac {x}{4}\right )}{e^5 \left (256 x+128 x^3+16 x^5\right )+\left (256 x+128 x^3+16 x^5\right ) \log \left (\frac {x}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4+x^2\right )^2-e^{5+x} x \left (4+x^2\right )^2+e^5 x \left (-4+x^2\right ) \log (2)-x \left (e^x \left (4+x^2\right )^2-x^2 \log (2)+\log (16)\right ) \log \left (\frac {x}{4}\right )}{16 x \left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx\\ &=\frac {1}{16} \int \frac {\left (4+x^2\right )^2-e^{5+x} x \left (4+x^2\right )^2+e^5 x \left (-4+x^2\right ) \log (2)-x \left (e^x \left (4+x^2\right )^2-x^2 \log (2)+\log (16)\right ) \log \left (\frac {x}{4}\right )}{x \left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx\\ &=\frac {1}{16} \int \left (-e^x+\frac {1}{x \left (e^5+\log \left (\frac {x}{4}\right )\right )}+\frac {e^5 (-2+x) (2+x) \log (2)}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )}+\frac {x^2 \log (2) \log \left (\frac {x}{4}\right )}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )}-\frac {\log (16) \log \left (\frac {x}{4}\right )}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )}\right ) \, dx\\ &=-\frac {\int e^x \, dx}{16}+\frac {1}{16} \int \frac {1}{x \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx+\frac {1}{16} \log (2) \int \frac {x^2 \log \left (\frac {x}{4}\right )}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx+\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {(-2+x) (2+x)}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx-\frac {1}{16} \log (16) \int \frac {\log \left (\frac {x}{4}\right )}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx\\ &=-\frac {e^x}{16}+\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^5+\log \left (\frac {x}{4}\right )\right )+\frac {1}{16} \log (2) \int \left (\frac {x^2}{\left (4+x^2\right )^2}-\frac {e^5 x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )}\right ) \, dx+\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {-4+x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx-\frac {1}{4} \log (16) \operatorname {Subst}\left (\int \frac {\log (x)}{\left (4+16 x^2\right )^2 \left (e^5+\log (x)\right )} \, dx,x,\frac {x}{4}\right )\\ &=-\frac {e^x}{16}+\frac {1}{16} \log \left (e^5+\log \left (\frac {x}{4}\right )\right )+\frac {1}{16} \log (2) \int \frac {x^2}{\left (4+x^2\right )^2} \, dx-\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx+\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {-4+x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx-\frac {1}{4} \log (16) \operatorname {Subst}\left (\int \left (\frac {1}{16 \left (1+4 x^2\right )^2}-\frac {e^5}{16 \left (1+4 x^2\right )^2 \left (e^5+\log (x)\right )}\right ) \, dx,x,\frac {x}{4}\right )\\ &=-\frac {e^x}{16}-\frac {x \log (2)}{32 \left (4+x^2\right )}+\frac {1}{16} \log \left (e^5+\log \left (\frac {x}{4}\right )\right )+\frac {1}{32} \log (2) \int \frac {1}{4+x^2} \, dx-\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx+\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {-4+x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx-\frac {1}{64} \log (16) \operatorname {Subst}\left (\int \frac {1}{\left (1+4 x^2\right )^2} \, dx,x,\frac {x}{4}\right )+\frac {1}{64} \left (e^5 \log (16)\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+4 x^2\right )^2 \left (e^5+\log (x)\right )} \, dx,x,\frac {x}{4}\right )\\ &=-\frac {e^x}{16}-\frac {x \log (2)}{32 \left (4+x^2\right )}+\frac {1}{64} \tan ^{-1}\left (\frac {x}{2}\right ) \log (2)-\frac {x \log (16)}{128 \left (4+x^2\right )}+\frac {1}{16} \log \left (e^5+\log \left (\frac {x}{4}\right )\right )-\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx+\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {-4+x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx-\frac {1}{128} \log (16) \operatorname {Subst}\left (\int \frac {1}{1+4 x^2} \, dx,x,\frac {x}{4}\right )+\frac {1}{64} \left (e^5 \log (16)\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+4 x^2\right )^2 \left (e^5+\log (x)\right )} \, dx,x,\frac {x}{4}\right )\\ &=-\frac {e^x}{16}-\frac {x \log (2)}{32 \left (4+x^2\right )}+\frac {1}{64} \tan ^{-1}\left (\frac {x}{2}\right ) \log (2)-\frac {x \log (16)}{128 \left (4+x^2\right )}-\frac {1}{256} \tan ^{-1}\left (\frac {x}{2}\right ) \log (16)+\frac {1}{16} \log \left (e^5+\log \left (\frac {x}{4}\right )\right )-\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx+\frac {1}{16} \left (e^5 \log (2)\right ) \int \frac {-4+x^2}{\left (4+x^2\right )^2 \left (e^5+\log \left (\frac {x}{4}\right )\right )} \, dx+\frac {1}{64} \left (e^5 \log (16)\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+4 x^2\right )^2 \left (e^5+\log (x)\right )} \, dx,x,\frac {x}{4}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 4.15, size = 36, normalized size = 1.03 \begin {gather*} \frac {1}{16} \left (1-e^x-\frac {x \log (256)}{8 \left (4+x^2\right )}+\log \left (e^5+\log \left (\frac {x}{4}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 45, normalized size = 1.29 \begin {gather*} -\frac {{\left (x e^{5} \log \relax (2) - {\left (x^{2} + 4\right )} e^{5} \log \left (e^{5} + \log \left (\frac {1}{4} \, x\right )\right ) + {\left (x^{2} + 4\right )} e^{\left (x + 5\right )}\right )} e^{\left (-5\right )}}{16 \, {\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 51, normalized size = 1.46 \begin {gather*} -\frac {x^{2} e^{x} - x^{2} \log \left (e^{5} - 2 \, \log \relax (2) + \log \relax (x)\right ) + x \log \relax (2) + 4 \, e^{x} - 4 \, \log \left (e^{5} - 2 \, \log \relax (2) + \log \relax (x)\right )}{16 \, {\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 36, normalized size = 1.03
method | result | size |
risch | \(-\frac {{\mathrm e}^{x} x^{2}+x \ln \relax (2)+4 \,{\mathrm e}^{x}}{16 \left (x^{2}+4\right )}+\frac {\ln \left ({\mathrm e}^{5}+\ln \left (\frac {x}{4}\right )\right )}{16}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 35, normalized size = 1.00 \begin {gather*} -\frac {{\left (x^{2} + 4\right )} e^{x} + x \log \relax (2)}{16 \, {\left (x^{2} + 4\right )}} + \frac {1}{16} \, \log \left (e^{5} - 2 \, \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.23, size = 29, normalized size = 0.83 \begin {gather*} \frac {\ln \left (\ln \left (\frac {x}{4}\right )+{\mathrm {e}}^5\right )}{16}-\frac {{\mathrm {e}}^x}{16}-\frac {x\,\ln \relax (2)}{16\,x^2+64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 27, normalized size = 0.77 \begin {gather*} - \frac {x \log {\relax (2 )}}{16 x^{2} + 64} - \frac {e^{x}}{16} + \frac {\log {\left (\log {\left (\frac {x}{4} \right )} + e^{5} \right )}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________