Optimal. Leaf size=20 \[ \log \left (4-\log ^2\left (\frac {1-\log (2 x)}{e}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 4, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {12, 6696, 207, 6684} \begin {gather*} \log \left (4-\log ^2\left (\frac {1-\log (2 x)}{e}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 207
Rule 6684
Rule 6696
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int \frac {\log \left (\frac {1-\log (2 x)}{e}\right )}{4 x-4 x \log (2 x)+(-x+x \log (2 x)) \log ^2\left (\frac {1-\log (2 x)}{e}\right )} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {\log \left (\frac {1-x}{e}\right )}{(-1+x) \left (-4+\log ^2\left (\frac {1-x}{e}\right )\right )} \, dx,x,\log (2 x)\right )\\ &=\log \left (4-\log ^2\left (\frac {1-\log (2 x)}{e}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.90 \begin {gather*} \log \left (4-(-1+\log (1-\log (2 x)))^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 29, normalized size = 1.45 \begin {gather*} \log \left (\log \left (-{\left (\log \left (2 \, x\right ) - 1\right )} e^{\left (-1\right )}\right ) + 2\right ) + \log \left (\log \left (-{\left (\log \left (2 \, x\right ) - 1\right )} e^{\left (-1\right )}\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 25, normalized size = 1.25 \begin {gather*} \log \left (\log \left (-\log \left (2 \, x\right ) + 1\right )^{2} - 2 \, \log \left (-\log \left (2 \, x\right ) + 1\right ) - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.90
method | result | size |
risch | \(\ln \left (\ln \left (\left (1-\ln \left (2 x \right )\right ) {\mathrm e}^{-1}\right )^{2}-4\right )\) | \(18\) |
norman | \(\ln \left (\ln \left (\left (1-\ln \left (2 x \right )\right ) {\mathrm e}^{-1}\right )-2\right )+\ln \left (\ln \left (\left (1-\ln \left (2 x \right )\right ) {\mathrm e}^{-1}\right )+2\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 103, normalized size = 5.15 \begin {gather*} -\frac {1}{2} \, {\left (\log \left (\log \left (-\log \relax (2) - \log \relax (x) + 1\right ) + 1\right ) - \log \left (\log \left (-\log \relax (2) - \log \relax (x) + 1\right ) - 3\right )\right )} \log \left (-{\left (\log \left (2 \, x\right ) - 1\right )} e^{\left (-1\right )}\right ) + \frac {1}{2} \, {\left (\log \left (-\log \relax (2) - \log \relax (x) + 1\right ) + 1\right )} \log \left (\log \left (-\log \relax (2) - \log \relax (x) + 1\right ) + 1\right ) - \frac {1}{2} \, {\left (\log \left (-\log \relax (2) - \log \relax (x) + 1\right ) - 3\right )} \log \left (\log \left (-\log \relax (2) - \log \relax (x) + 1\right ) - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.07, size = 16, normalized size = 0.80 \begin {gather*} \ln \left ({\ln \left (-{\mathrm {e}}^{-1}\,\left (\ln \left (2\,x\right )-1\right )\right )}^2-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 15, normalized size = 0.75 \begin {gather*} \log {\left (\log {\left (\frac {1 - \log {\left (2 x \right )}}{e} \right )}^{2} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________