Optimal. Leaf size=23 \[ x^2+\frac {-e^x+x}{\log (3)+\log \left (4 e^6\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {6, 12, 2194} \begin {gather*} x^2+\frac {x}{6+\log (12)}-\frac {e^x}{6+\log (12)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-e^x+2 x \left (\log (3)+\log \left (4 e^6\right )\right )}{\log (3)+\log \left (4 e^6\right )} \, dx\\ &=\frac {\int \left (1-e^x+2 x \left (\log (3)+\log \left (4 e^6\right )\right )\right ) \, dx}{6+\log (12)}\\ &=x^2+\frac {x}{6+\log (12)}-\frac {\int e^x \, dx}{6+\log (12)}\\ &=x^2-\frac {e^x}{6+\log (12)}+\frac {x}{6+\log (12)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 28, normalized size = 1.22 \begin {gather*} \frac {-e^x+x+6 x^2+\frac {1}{2} x^2 \log (144)}{6+\log (12)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 35, normalized size = 1.52 \begin {gather*} \frac {x^{2} \log \relax (3) + 2 \, x^{2} \log \relax (2) + 6 \, x^{2} + x - e^{x}}{\log \relax (3) + 2 \, \log \relax (2) + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 32, normalized size = 1.39 \begin {gather*} \frac {x^{2} \log \relax (3) + x^{2} \log \left (4 \, e^{6}\right ) + x - e^{x}}{\log \relax (3) + \log \left (4 \, e^{6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.35
method | result | size |
norman | \(x^{2}+\frac {x}{6+2 \ln \relax (2)+\ln \relax (3)}-\frac {{\mathrm e}^{x}}{6+2 \ln \relax (2)+\ln \relax (3)}\) | \(31\) |
default | \(\frac {x +x^{2} \ln \relax (3)+x^{2} \ln \left (4 \,{\mathrm e}^{6}\right )-{\mathrm e}^{x}}{\ln \left (4 \,{\mathrm e}^{6}\right )+\ln \relax (3)}\) | \(33\) |
risch | \(\frac {2 x^{2} \ln \relax (2)}{6+2 \ln \relax (2)+\ln \relax (3)}+\frac {x^{2} \ln \relax (3)}{6+2 \ln \relax (2)+\ln \relax (3)}+\frac {6 x^{2}}{6+2 \ln \relax (2)+\ln \relax (3)}+\frac {x}{6+2 \ln \relax (2)+\ln \relax (3)}-\frac {{\mathrm e}^{x}}{6+2 \ln \relax (2)+\ln \relax (3)}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 32, normalized size = 1.39 \begin {gather*} \frac {x^{2} \log \relax (3) + x^{2} \log \left (4 \, e^{6}\right ) + x - e^{x}}{\log \relax (3) + \log \left (4 \, e^{6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 22, normalized size = 0.96 \begin {gather*} \frac {x-{\mathrm {e}}^x+x^2\,\left (\ln \left (12\right )+6\right )}{\ln \left (12\,{\mathrm {e}}^6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 27, normalized size = 1.17 \begin {gather*} x^{2} + \frac {x}{\log {\relax (3 )} + 2 \log {\relax (2 )} + 6} - \frac {e^{x}}{\log {\relax (3 )} + 2 \log {\relax (2 )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________