Optimal. Leaf size=25 \[ 25 e^{2 \left (-e^x+\log \left (-e^{e^x}+\log (4)\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (2 e^{2 x}-4 e^x \log \left (-e^{e^x}+\log (4)\right )+2 \log ^2\left (-e^{e^x}+\log (4)\right )\right ) \left (-100 e^{2 x} \log (4)+100 e^x \log (4) \log \left (-e^{e^x}+\log (4)\right )\right )}{e^{e^x}-\log (4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int 100 e^{2 \left (x^2+\log ^2\left (-e^x+\log (4)\right )\right )} \log (4) \left (-e^x+\log (4)\right )^{-1-4 x} \left (x-\log \left (-e^x+\log (4)\right )\right ) \, dx,x,e^x\right )\\ &=(100 \log (4)) \operatorname {Subst}\left (\int e^{2 \left (x^2+\log ^2\left (-e^x+\log (4)\right )\right )} \left (-e^x+\log (4)\right )^{-1-4 x} \left (x-\log \left (-e^x+\log (4)\right )\right ) \, dx,x,e^x\right )\\ &=(100 \log (4)) \operatorname {Subst}\left (\int \left (e^{2 \left (x^2+\log ^2\left (-e^x+\log (4)\right )\right )} x \left (-e^x+\log (4)\right )^{-1-4 x}-e^{2 \left (x^2+\log ^2\left (-e^x+\log (4)\right )\right )} \left (-e^x+\log (4)\right )^{-1-4 x} \log \left (-e^x+\log (4)\right )\right ) \, dx,x,e^x\right )\\ &=(100 \log (4)) \operatorname {Subst}\left (\int e^{2 \left (x^2+\log ^2\left (-e^x+\log (4)\right )\right )} x \left (-e^x+\log (4)\right )^{-1-4 x} \, dx,x,e^x\right )-(100 \log (4)) \operatorname {Subst}\left (\int e^{2 \left (x^2+\log ^2\left (-e^x+\log (4)\right )\right )} \left (-e^x+\log (4)\right )^{-1-4 x} \log \left (-e^x+\log (4)\right ) \, dx,x,e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 43, normalized size = 1.72 \begin {gather*} 25 e^{2 e^{2 x}+2 \log ^2\left (-e^{e^x}+\log (4)\right )} \left (-e^{e^x}+\log (4)\right )^{-4 e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 40, normalized size = 1.60 \begin {gather*} 25 \, e^{\left (-4 \, e^{x} \log \left (-e^{\left (e^{x}\right )} + 2 \, \log \relax (2)\right ) + 2 \, \log \left (-e^{\left (e^{x}\right )} + 2 \, \log \relax (2)\right )^{2} + 2 \, e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {200 \, {\left (e^{x} \log \relax (2) \log \left (-e^{\left (e^{x}\right )} + 2 \, \log \relax (2)\right ) - e^{\left (2 \, x\right )} \log \relax (2)\right )} e^{\left (-4 \, e^{x} \log \left (-e^{\left (e^{x}\right )} + 2 \, \log \relax (2)\right ) + 2 \, \log \left (-e^{\left (e^{x}\right )} + 2 \, \log \relax (2)\right )^{2} + 2 \, e^{\left (2 \, x\right )}\right )}}{e^{\left (e^{x}\right )} - 2 \, \log \relax (2)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 43, normalized size = 1.72
method | result | size |
risch | \(25 \left (-{\mathrm e}^{{\mathrm e}^{x}}+2 \ln \relax (2)\right )^{-4 \,{\mathrm e}^{x}} {\mathrm e}^{2 \ln \left (-{\mathrm e}^{{\mathrm e}^{x}}+2 \ln \relax (2)\right )^{2}+2 \,{\mathrm e}^{2 x}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 40, normalized size = 1.60 \begin {gather*} 25 \, e^{\left (-4 \, e^{x} \log \left (-e^{\left (e^{x}\right )} + 2 \, \log \relax (2)\right ) + 2 \, \log \left (-e^{\left (e^{x}\right )} + 2 \, \log \relax (2)\right )^{2} + 2 \, e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.34, size = 40, normalized size = 1.60 \begin {gather*} \frac {25\,{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{2\,{\ln \left (\ln \relax (4)-{\mathrm {e}}^{{\mathrm {e}}^x}\right )}^2}}{{\left (2\,\ln \relax (2)-{\mathrm {e}}^{{\mathrm {e}}^x}\right )}^{4\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________