Optimal. Leaf size=24 \[ 5-\frac {13}{3 x^2 \left (2 x \left (e^x+x\right )^2+\log (2)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {130 x^3+e^{2 x} \left (78 x+52 x^2\right )+e^x \left (208 x^2+52 x^3\right )+26 \log (2)}{12 e^{4 x} x^5+48 e^{3 x} x^6+12 x^9+12 x^6 \log (2)+3 x^3 \log ^2(2)+e^{2 x} \left (72 x^7+12 x^4 \log (2)\right )+e^x \left (48 x^8+24 x^5 \log (2)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {26 \left (5 x^3+2 e^x x^2 (4+x)+e^{2 x} x (3+2 x)+\log (2)\right )}{3 x^3 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx\\ &=\frac {26}{3} \int \frac {5 x^3+2 e^x x^2 (4+x)+e^{2 x} x (3+2 x)+\log (2)}{x^3 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx\\ &=\frac {26}{3} \int \left (\frac {3+2 x}{x^3 \left (4 e^{2 x} x+8 e^x x^2+4 x^3+\log (4)\right )}-\frac {-4 e^x x^2-4 x^3+4 e^x x^3+4 x^4+\log (2)+x \log (4)}{2 x^3 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2}\right ) \, dx\\ &=-\left (\frac {13}{3} \int \frac {-4 e^x x^2-4 x^3+4 e^x x^3+4 x^4+\log (2)+x \log (4)}{x^3 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx\right )+\frac {26}{3} \int \frac {3+2 x}{x^3 \left (4 e^{2 x} x+8 e^x x^2+4 x^3+\log (4)\right )} \, dx\\ &=-\left (\frac {13}{3} \int \left (-\frac {4}{\left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2}+\frac {4 e^x}{\left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2}-\frac {4 e^x}{x \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2}+\frac {4 x}{\left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2}+\frac {\log (2)}{x^3 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2}+\frac {\log (4)}{x^2 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2}\right ) \, dx\right )+\frac {26}{3} \int \left (\frac {3}{x^3 \left (4 e^{2 x} x+8 e^x x^2+4 x^3+\log (4)\right )}+\frac {2}{x^2 \left (4 e^{2 x} x+8 e^x x^2+4 x^3+\log (4)\right )}\right ) \, dx\\ &=\frac {52}{3} \int \frac {1}{\left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx-\frac {52}{3} \int \frac {e^x}{\left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx+\frac {52}{3} \int \frac {e^x}{x \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx-\frac {52}{3} \int \frac {x}{\left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx+\frac {52}{3} \int \frac {1}{x^2 \left (4 e^{2 x} x+8 e^x x^2+4 x^3+\log (4)\right )} \, dx+26 \int \frac {1}{x^3 \left (4 e^{2 x} x+8 e^x x^2+4 x^3+\log (4)\right )} \, dx-\frac {1}{3} (13 \log (2)) \int \frac {1}{x^3 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx-\frac {1}{3} (13 \log (4)) \int \frac {1}{x^2 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.73, size = 33, normalized size = 1.38 \begin {gather*} -\frac {13}{3 x^2 \left (2 e^{2 x} x+4 e^x x^2+2 x^3+\log (2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 32, normalized size = 1.33 \begin {gather*} -\frac {13}{3 \, {\left (2 \, x^{5} + 4 \, x^{4} e^{x} + 2 \, x^{3} e^{\left (2 \, x\right )} + x^{2} \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.98, size = 32, normalized size = 1.33 \begin {gather*} -\frac {26}{3 \, {\left (2 \, x^{5} + 4 \, x^{4} e^{x} + 2 \, x^{3} e^{\left (2 \, x\right )} + x^{2} \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 30, normalized size = 1.25
method | result | size |
risch | \(-\frac {13}{3 x^{2} \left (2 x \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x} x^{2}+2 x^{3}+\ln \relax (2)\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 32, normalized size = 1.33 \begin {gather*} -\frac {13}{3 \, {\left (2 \, x^{5} + 4 \, x^{4} e^{x} + 2 \, x^{3} e^{\left (2 \, x\right )} + x^{2} \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {26\,\ln \relax (2)+{\mathrm {e}}^{2\,x}\,\left (52\,x^2+78\,x\right )+{\mathrm {e}}^x\,\left (52\,x^3+208\,x^2\right )+130\,x^3}{3\,x^3\,{\ln \relax (2)}^2+12\,x^5\,{\mathrm {e}}^{4\,x}+48\,x^6\,{\mathrm {e}}^{3\,x}+{\mathrm {e}}^x\,\left (48\,x^8+24\,\ln \relax (2)\,x^5\right )+12\,x^6\,\ln \relax (2)+{\mathrm {e}}^{2\,x}\,\left (72\,x^7+12\,\ln \relax (2)\,x^4\right )+12\,x^9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 34, normalized size = 1.42 \begin {gather*} - \frac {13}{6 x^{5} + 12 x^{4} e^{x} + 6 x^{3} e^{2 x} + 3 x^{2} \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________