Optimal. Leaf size=18 \[ 3 \left (2-\frac {e^x}{\left (-5+x+\log ^2(5)\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {2199, 2177, 2178} \begin {gather*} -\frac {3 e^x}{\left (-x+5-\log ^2(5)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2177
Rule 2178
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {6 e^x}{\left (-5+x+\log ^2(5)\right )^3}-\frac {3 e^x}{\left (-5+x+\log ^2(5)\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {e^x}{\left (-5+x+\log ^2(5)\right )^2} \, dx\right )+6 \int \frac {e^x}{\left (-5+x+\log ^2(5)\right )^3} \, dx\\ &=-\frac {3 e^x}{\left (5-x-\log ^2(5)\right )^2}-\frac {3 e^x}{5-x-\log ^2(5)}+3 \int \frac {e^x}{\left (-5+x+\log ^2(5)\right )^2} \, dx-3 \int \frac {e^x}{-5+x+\log ^2(5)} \, dx\\ &=-3 e^{5-\log ^2(5)} \text {Ei}\left (-5+x+\log ^2(5)\right )-\frac {3 e^x}{\left (5-x-\log ^2(5)\right )^2}+3 \int \frac {e^x}{-5+x+\log ^2(5)} \, dx\\ &=-\frac {3 e^x}{\left (5-x-\log ^2(5)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 14, normalized size = 0.78 \begin {gather*} -\frac {3 e^x}{\left (-5+x+\log ^2(5)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 27, normalized size = 1.50 \begin {gather*} -\frac {3 \, e^{x}}{\log \relax (5)^{4} + 2 \, {\left (x - 5\right )} \log \relax (5)^{2} + x^{2} - 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 31, normalized size = 1.72 \begin {gather*} -\frac {3 \, e^{x}}{\log \relax (5)^{4} + 2 \, x \log \relax (5)^{2} + x^{2} - 10 \, \log \relax (5)^{2} - 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 14, normalized size = 0.78
method | result | size |
default | \(-\frac {3 \,{\mathrm e}^{x}}{\left (\ln \relax (5)^{2}-5+x \right )^{2}}\) | \(14\) |
norman | \(-\frac {3 \,{\mathrm e}^{x}}{\left (\ln \relax (5)^{2}-5+x \right )^{2}}\) | \(14\) |
risch | \(-\frac {3 \,{\mathrm e}^{x}}{\left (\ln \relax (5)^{2}-5+x \right )^{2}}\) | \(14\) |
gosper | \(-\frac {3 \,{\mathrm e}^{x}}{\ln \relax (5)^{4}+2 x \ln \relax (5)^{2}-10 \ln \relax (5)^{2}+x^{2}-10 x +25}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {3 \, e^{\left (-\log \relax (5)^{2} + 5\right )} E_{3}\left (-\log \relax (5)^{2} - x + 5\right ) \log \relax (5)^{2}}{{\left (\log \relax (5)^{2} + x - 5\right )}^{2}} - \frac {3 \, x e^{x}}{\log \relax (5)^{6} - 15 \, \log \relax (5)^{4} + 3 \, {\left (\log \relax (5)^{2} - 5\right )} x^{2} + x^{3} + 3 \, {\left (\log \relax (5)^{4} - 10 \, \log \relax (5)^{2} + 25\right )} x + 75 \, \log \relax (5)^{2} - 125} - \frac {21 \, e^{\left (-\log \relax (5)^{2} + 5\right )} E_{3}\left (-\log \relax (5)^{2} - x + 5\right )}{{\left (\log \relax (5)^{2} + x - 5\right )}^{2}} - 3 \, \int -\frac {{\left (\log \relax (5)^{2} - 2 \, x - 5\right )} e^{x}}{\log \relax (5)^{8} - 20 \, \log \relax (5)^{6} + 4 \, {\left (\log \relax (5)^{2} - 5\right )} x^{3} + x^{4} + 150 \, \log \relax (5)^{4} + 6 \, {\left (\log \relax (5)^{4} - 10 \, \log \relax (5)^{2} + 25\right )} x^{2} + 4 \, {\left (\log \relax (5)^{6} - 15 \, \log \relax (5)^{4} + 75 \, \log \relax (5)^{2} - 125\right )} x - 500 \, \log \relax (5)^{2} + 625}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.41, size = 13, normalized size = 0.72 \begin {gather*} -\frac {3\,{\mathrm {e}}^x}{{\left (x+{\ln \relax (5)}^2-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 34, normalized size = 1.89 \begin {gather*} - \frac {3 e^{x}}{x^{2} - 10 x + 2 x \log {\relax (5 )}^{2} - 10 \log {\relax (5 )}^{2} + \log {\relax (5 )}^{4} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________