Optimal. Leaf size=29 \[ -1-e^{\frac {3}{2} e^{-e^x-x+x^4}}+e^{2 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{2} \left (4 e^{2 x}+e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} \left (3+3 e^x-12 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (4 e^{2 x}+e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} \left (3+3 e^x-12 x^3\right )\right ) \, dx\\ &=\frac {1}{2} \int e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} \left (3+3 e^x-12 x^3\right ) \, dx+2 \int e^{2 x} \, dx\\ &=e^{2 x}+\frac {1}{2} \int 3 e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} \left (1+e^x-4 x^3\right ) \, dx\\ &=e^{2 x}+\frac {3}{2} \int e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} \left (1+e^x-4 x^3\right ) \, dx\\ &=e^{2 x}+\frac {3}{2} \int \left (e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}+x^4}+e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4}-4 e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} x^3\right ) \, dx\\ &=e^{2 x}+\frac {3}{2} \int e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}+x^4} \, dx+\frac {3}{2} \int e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} \, dx-6 \int e^{-e^x+\frac {3}{2} e^{-e^x-x+x^4}-x+x^4} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 28, normalized size = 0.97 \begin {gather*} -e^{\frac {3}{2} e^{-e^x-x+x^4}}+e^{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.78, size = 50, normalized size = 1.72 \begin {gather*} {\left (e^{\left (x^{4} + x - e^{x}\right )} - e^{\left (x^{4} - x + \frac {3}{2} \, e^{\left (x^{4} - x - e^{x}\right )} - e^{x}\right )}\right )} e^{\left (-x^{4} + x + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3}{2} \, {\left (4 \, x^{3} - e^{x} - 1\right )} e^{\left (x^{4} - x + \frac {3}{2} \, e^{\left (x^{4} - x - e^{x}\right )} - e^{x}\right )} + 2 \, e^{\left (2 \, x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 23, normalized size = 0.79
method | result | size |
risch | \(-{\mathrm e}^{\frac {3 \,{\mathrm e}^{-{\mathrm e}^{x}+x^{4}-x}}{2}}+{\mathrm e}^{2 x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 22, normalized size = 0.76 \begin {gather*} e^{\left (2 \, x\right )} - e^{\left (\frac {3}{2} \, e^{\left (x^{4} - x - e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 23, normalized size = 0.79 \begin {gather*} {\mathrm {e}}^{2\,x}-{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{-{\mathrm {e}}^x}}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 19, normalized size = 0.66 \begin {gather*} e^{2 x} - e^{\frac {3 e^{x^{4} - x - e^{x}}}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________