Optimal. Leaf size=24 \[ x^2+\log \left (\frac {1}{4} e^{-e^x} \left (25+\frac {2 x}{e^4}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 19, normalized size of antiderivative = 0.79, number of steps used = 5, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6742, 2194, 698} \begin {gather*} x^2-e^x+\log \left (2 x+25 e^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 698
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^x+\frac {2 \left (1+25 e^4 x+2 x^2\right )}{25 e^4+2 x}\right ) \, dx\\ &=2 \int \frac {1+25 e^4 x+2 x^2}{25 e^4+2 x} \, dx-\int e^x \, dx\\ &=-e^x+2 \int \left (x+\frac {1}{25 e^4+2 x}\right ) \, dx\\ &=-e^x+x^2+\log \left (25 e^4+2 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 19, normalized size = 0.79 \begin {gather*} -e^x+x^2+\log \left (25 e^4+2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 17, normalized size = 0.71 \begin {gather*} x^{2} - e^{x} + \log \left (2 \, x + 25 \, e^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 17, normalized size = 0.71 \begin {gather*} x^{2} - e^{x} + \log \left (2 \, x + 25 \, e^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 18, normalized size = 0.75
method | result | size |
norman | \(-{\mathrm e}^{x}+x^{2}+\ln \left (25 \,{\mathrm e}^{4}+2 x \right )\) | \(18\) |
risch | \(-{\mathrm e}^{x}+x^{2}+\ln \left (25 \,{\mathrm e}^{4}+2 x \right )\) | \(18\) |
default | \(-{\mathrm e}^{x}+x^{2}+\ln \left (25 \,{\mathrm e}^{4}+2 x \right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 56, normalized size = 2.33 \begin {gather*} x^{2} - \frac {25}{2} \, {\left (25 \, e^{4} \log \left (2 \, x + 25 \, e^{4}\right ) - 2 \, x\right )} e^{4} - 25 \, x e^{4} + \frac {625}{2} \, e^{8} \log \left (2 \, x + 25 \, e^{4}\right ) - e^{x} + \log \left (2 \, x + 25 \, e^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.83, size = 15, normalized size = 0.62 \begin {gather*} \ln \left (x+\frac {25\,{\mathrm {e}}^4}{2}\right )-{\mathrm {e}}^x+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.62 \begin {gather*} x^{2} - e^{x} + \log {\left (2 x + 25 e^{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________