Optimal. Leaf size=39 \[ -4+\frac {5 e^x}{x+\frac {x}{\frac {x}{3}+\log \left (\left (-x+(1-x)^4 x^2\right )^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 27.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-90+180 x-1090 x^2+2165 x^3-1835 x^4+580 x^5-10 x^6-10 x^7+5 x^8\right )+e^x \left (45-60 x+165 x^2-300 x^3+150 x^4+75 x^5-105 x^6+30 x^7\right ) \log \left (x^2-2 x^3+9 x^4-20 x^5+36 x^6-58 x^7+70 x^8-56 x^9+28 x^{10}-8 x^{11}+x^{12}\right )+e^x \left (45-90 x+225 x^2-450 x^3+450 x^4-225 x^5+45 x^6\right ) \log ^2\left (x^2-2 x^3+9 x^4-20 x^5+36 x^6-58 x^7+70 x^8-56 x^9+28 x^{10}-8 x^{11}+x^{12}\right )}{-9 x^2+3 x^3-31 x^4+31 x^5-4 x^6-9 x^7+2 x^8+x^9+\left (-18 x^2+12 x^3-66 x^4+84 x^5-36 x^6-6 x^7+6 x^8\right ) \log \left (x^2-2 x^3+9 x^4-20 x^5+36 x^6-58 x^7+70 x^8-56 x^9+28 x^{10}-8 x^{11}+x^{12}\right )+\left (-9 x^2+9 x^3-36 x^4+54 x^5-36 x^6+9 x^7\right ) \log ^2\left (x^2-2 x^3+9 x^4-20 x^5+36 x^6-58 x^7+70 x^8-56 x^9+28 x^{10}-8 x^{11}+x^{12}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^x \left (18-36 x+218 x^2-433 x^3+367 x^4-116 x^5+2 x^6+2 x^7-x^8-3 \left (3-4 x+11 x^2-20 x^3+10 x^4+5 x^5-7 x^6+2 x^7\right ) \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )-9 \left (1-2 x+5 x^2-10 x^3+10 x^4-5 x^5+x^6\right ) \log ^2\left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )}{x^2 \left (1-x+4 x^2-6 x^3+4 x^4-x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx\\ &=5 \int \frac {e^x \left (18-36 x+218 x^2-433 x^3+367 x^4-116 x^5+2 x^6+2 x^7-x^8-3 \left (3-4 x+11 x^2-20 x^3+10 x^4+5 x^5-7 x^6+2 x^7\right ) \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )-9 \left (1-2 x+5 x^2-10 x^3+10 x^4-5 x^5+x^6\right ) \log ^2\left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )}{x^2 \left (1-x+4 x^2-6 x^3+4 x^4-x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx\\ &=5 \int \left (\frac {e^x (-1+x)}{x^2}+\frac {3 e^x \left (-6+11 x-71 x^2+140 x^3-114 x^4+32 x^5+x^6\right )}{x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}-\frac {3 e^x (-1+x)}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )}\right ) \, dx\\ &=5 \int \frac {e^x (-1+x)}{x^2} \, dx+15 \int \frac {e^x \left (-6+11 x-71 x^2+140 x^3-114 x^4+32 x^5+x^6\right )}{x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx-15 \int \frac {e^x (-1+x)}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )} \, dx\\ &=\frac {5 e^x}{x}+15 \int \left (\frac {6 e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}-\frac {5 e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}+\frac {6 e^x \left (-7+14 x-10 x^2+x^3+x^4\right )}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}\right ) \, dx-15 \int \left (-\frac {e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )}+\frac {e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )}\right ) \, dx\\ &=\frac {5 e^x}{x}+15 \int \frac {e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )} \, dx-15 \int \frac {e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )} \, dx-75 \int \frac {e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+90 \int \frac {e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+90 \int \frac {e^x \left (-7+14 x-10 x^2+x^3+x^4\right )}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx\\ &=\frac {5 e^x}{x}+15 \int \frac {e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )} \, dx-15 \int \frac {e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )} \, dx-75 \int \frac {e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+90 \int \frac {e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+90 \int \left (-\frac {7 e^x}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}+\frac {14 e^x x}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}-\frac {10 e^x x^2}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}+\frac {e^x x^3}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}+\frac {e^x x^4}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2}\right ) \, dx\\ &=\frac {5 e^x}{x}+15 \int \frac {e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )} \, dx-15 \int \frac {e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )} \, dx-75 \int \frac {e^x}{x \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+90 \int \frac {e^x}{x^2 \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+90 \int \frac {e^x x^3}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+90 \int \frac {e^x x^4}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx-630 \int \frac {e^x}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx-900 \int \frac {e^x x^2}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx+1260 \int \frac {e^x x}{\left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right ) \left (3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 47, normalized size = 1.21 \begin {gather*} \frac {5 e^x \left (1-\frac {3}{3+x+3 \log \left (x^2 \left (-1+x-4 x^2+6 x^3-4 x^4+x^5\right )^2\right )}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.17, size = 129, normalized size = 3.31 \begin {gather*} \frac {5 \, {\left (x e^{x} + 3 \, e^{x} \log \left (x^{12} - 8 \, x^{11} + 28 \, x^{10} - 56 \, x^{9} + 70 \, x^{8} - 58 \, x^{7} + 36 \, x^{6} - 20 \, x^{5} + 9 \, x^{4} - 2 \, x^{3} + x^{2}\right )\right )}}{x^{2} + 3 \, x \log \left (x^{12} - 8 \, x^{11} + 28 \, x^{10} - 56 \, x^{9} + 70 \, x^{8} - 58 \, x^{7} + 36 \, x^{6} - 20 \, x^{5} + 9 \, x^{4} - 2 \, x^{3} + x^{2}\right ) + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 8.88, size = 129, normalized size = 3.31 \begin {gather*} \frac {5 \, {\left (x e^{x} + 3 \, e^{x} \log \left (x^{12} - 8 \, x^{11} + 28 \, x^{10} - 56 \, x^{9} + 70 \, x^{8} - 58 \, x^{7} + 36 \, x^{6} - 20 \, x^{5} + 9 \, x^{4} - 2 \, x^{3} + x^{2}\right )\right )}}{x^{2} + 3 \, x \log \left (x^{12} - 8 \, x^{11} + 28 \, x^{10} - 56 \, x^{9} + 70 \, x^{8} - 58 \, x^{7} + 36 \, x^{6} - 20 \, x^{5} + 9 \, x^{4} - 2 \, x^{3} + x^{2}\right ) + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.37, size = 454, normalized size = 11.64
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{x}}{x}-\frac {30 i {\mathrm e}^{x}}{x \left (3 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-6 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+3 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+3 \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right ) \mathrm {csgn}\left (i x^{2} \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right )-3 \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right )^{2}+3 \pi \mathrm {csgn}\left (i \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right )-6 \pi \,\mathrm {csgn}\left (i \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )\right ) \mathrm {csgn}\left (i \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right )^{2}+3 \pi \mathrm {csgn}\left (i \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right )^{3}-3 \pi \,\mathrm {csgn}\left (i \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right ) \mathrm {csgn}\left (i x^{2} \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right )^{2}+3 \pi \mathrm {csgn}\left (i x^{2} \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )^{2}\right )^{3}+2 i x +12 i \ln \relax (x )+12 i \ln \left (x^{5}-4 x^{4}+6 x^{3}-4 x^{2}+x -1\right )+6 i\right )}\) | \(454\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 77, normalized size = 1.97 \begin {gather*} \frac {5 \, {\left ({\left (x + 6 \, \log \relax (x)\right )} e^{x} + 6 \, e^{x} \log \left (x^{5} - 4 \, x^{4} + 6 \, x^{3} - 4 \, x^{2} + x - 1\right )\right )}}{x^{2} + 6 \, x \log \left (x^{5} - 4 \, x^{4} + 6 \, x^{3} - 4 \, x^{2} + x - 1\right ) + 6 \, x \log \relax (x) + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.76, size = 77, normalized size = 1.97 \begin {gather*} \frac {5\,{\mathrm {e}}^x}{x}-\frac {15\,{\mathrm {e}}^x}{3\,x+3\,x\,\ln \left (x^{12}-8\,x^{11}+28\,x^{10}-56\,x^9+70\,x^8-58\,x^7+36\,x^6-20\,x^5+9\,x^4-2\,x^3+x^2\right )+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.99, size = 126, normalized size = 3.23 \begin {gather*} \frac {\left (5 x + 15 \log {\left (x^{12} - 8 x^{11} + 28 x^{10} - 56 x^{9} + 70 x^{8} - 58 x^{7} + 36 x^{6} - 20 x^{5} + 9 x^{4} - 2 x^{3} + x^{2} \right )}\right ) e^{x}}{x^{2} + 3 x \log {\left (x^{12} - 8 x^{11} + 28 x^{10} - 56 x^{9} + 70 x^{8} - 58 x^{7} + 36 x^{6} - 20 x^{5} + 9 x^{4} - 2 x^{3} + x^{2} \right )} + 3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________