Optimal. Leaf size=24 \[ x+\left (2 x+x^4-\frac {1}{5} x \left (x+5 \log ^2(x)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 73, normalized size of antiderivative = 3.04, number of steps used = 24, number of rules used = 5, integrand size = 84, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {12, 1594, 2356, 2304, 2305} \begin {gather*} x^8-\frac {2 x^6}{5}+4 x^5-2 x^5 \log ^2(x)+\frac {x^4}{25}-\frac {4 x^3}{5}+\frac {2}{5} x^3 \log ^2(x)+4 x^2+x^2 \log ^4(x)-4 x^2 \log ^2(x)+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2304
Rule 2305
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \left (25+200 x-60 x^2+4 x^3+500 x^4-60 x^5+200 x^7+\left (-200 x+20 x^2-100 x^4\right ) \log (x)+\left (-200 x+30 x^2-250 x^4\right ) \log ^2(x)+100 x \log ^3(x)+50 x \log ^4(x)\right ) \, dx\\ &=x+4 x^2-\frac {4 x^3}{5}+\frac {x^4}{25}+4 x^5-\frac {2 x^6}{5}+x^8+\frac {1}{25} \int \left (-200 x+20 x^2-100 x^4\right ) \log (x) \, dx+\frac {1}{25} \int \left (-200 x+30 x^2-250 x^4\right ) \log ^2(x) \, dx+2 \int x \log ^4(x) \, dx+4 \int x \log ^3(x) \, dx\\ &=x+4 x^2-\frac {4 x^3}{5}+\frac {x^4}{25}+4 x^5-\frac {2 x^6}{5}+x^8+2 x^2 \log ^3(x)+x^2 \log ^4(x)+\frac {1}{25} \int x \left (-200+20 x-100 x^3\right ) \log (x) \, dx+\frac {1}{25} \int x \left (-200+30 x-250 x^3\right ) \log ^2(x) \, dx-4 \int x \log ^3(x) \, dx-6 \int x \log ^2(x) \, dx\\ &=x+4 x^2-\frac {4 x^3}{5}+\frac {x^4}{25}+4 x^5-\frac {2 x^6}{5}+x^8-3 x^2 \log ^2(x)+x^2 \log ^4(x)+\frac {1}{25} \int \left (-200 x \log (x)+20 x^2 \log (x)-100 x^4 \log (x)\right ) \, dx+\frac {1}{25} \int \left (-200 x \log ^2(x)+30 x^2 \log ^2(x)-250 x^4 \log ^2(x)\right ) \, dx+6 \int x \log (x) \, dx+6 \int x \log ^2(x) \, dx\\ &=x+\frac {5 x^2}{2}-\frac {4 x^3}{5}+\frac {x^4}{25}+4 x^5-\frac {2 x^6}{5}+x^8+3 x^2 \log (x)+x^2 \log ^4(x)+\frac {4}{5} \int x^2 \log (x) \, dx+\frac {6}{5} \int x^2 \log ^2(x) \, dx-4 \int x^4 \log (x) \, dx-6 \int x \log (x) \, dx-8 \int x \log (x) \, dx-8 \int x \log ^2(x) \, dx-10 \int x^4 \log ^2(x) \, dx\\ &=x+6 x^2-\frac {8 x^3}{9}+\frac {x^4}{25}+\frac {104 x^5}{25}-\frac {2 x^6}{5}+x^8-4 x^2 \log (x)+\frac {4}{15} x^3 \log (x)-\frac {4}{5} x^5 \log (x)-4 x^2 \log ^2(x)+\frac {2}{5} x^3 \log ^2(x)-2 x^5 \log ^2(x)+x^2 \log ^4(x)-\frac {4}{5} \int x^2 \log (x) \, dx+4 \int x^4 \log (x) \, dx+8 \int x \log (x) \, dx\\ &=x+4 x^2-\frac {4 x^3}{5}+\frac {x^4}{25}+4 x^5-\frac {2 x^6}{5}+x^8-4 x^2 \log ^2(x)+\frac {2}{5} x^3 \log ^2(x)-2 x^5 \log ^2(x)+x^2 \log ^4(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 73, normalized size = 3.04 \begin {gather*} x+4 x^2-\frac {4 x^3}{5}+\frac {x^4}{25}+4 x^5-\frac {2 x^6}{5}+x^8-4 x^2 \log ^2(x)+\frac {2}{5} x^3 \log ^2(x)-2 x^5 \log ^2(x)+x^2 \log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.86, size = 60, normalized size = 2.50 \begin {gather*} x^{8} - \frac {2}{5} \, x^{6} + x^{2} \log \relax (x)^{4} + 4 \, x^{5} + \frac {1}{25} \, x^{4} - \frac {4}{5} \, x^{3} - \frac {2}{5} \, {\left (5 \, x^{5} - x^{3} + 10 \, x^{2}\right )} \log \relax (x)^{2} + 4 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 65, normalized size = 2.71 \begin {gather*} x^{8} - 2 \, x^{5} \log \relax (x)^{2} - \frac {2}{5} \, x^{6} + x^{2} \log \relax (x)^{4} + 4 \, x^{5} + \frac {2}{5} \, x^{3} \log \relax (x)^{2} + \frac {1}{25} \, x^{4} - 4 \, x^{2} \log \relax (x)^{2} - \frac {4}{5} \, x^{3} + 4 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.03, size = 66, normalized size = 2.75
method | result | size |
default | \(4 x^{2}+x -\frac {4 x^{3}}{5}+\frac {x^{4}}{25}+4 x^{5}-\frac {2 x^{6}}{5}+x^{8}+x^{2} \ln \relax (x )^{4}-2 x^{5} \ln \relax (x )^{2}+\frac {2 x^{3} \ln \relax (x )^{2}}{5}-4 x^{2} \ln \relax (x )^{2}\) | \(66\) |
risch | \(4 x^{2}+x -\frac {4 x^{3}}{5}+\frac {x^{4}}{25}+4 x^{5}-\frac {2 x^{6}}{5}+x^{8}+x^{2} \ln \relax (x )^{4}-2 x^{5} \ln \relax (x )^{2}+\frac {2 x^{3} \ln \relax (x )^{2}}{5}-4 x^{2} \ln \relax (x )^{2}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 153, normalized size = 6.38 \begin {gather*} x^{8} - \frac {2}{25} \, {\left (25 \, \log \relax (x)^{2} - 10 \, \log \relax (x) + 2\right )} x^{5} - \frac {2}{5} \, x^{6} + \frac {104}{25} \, x^{5} + \frac {2}{45} \, {\left (9 \, \log \relax (x)^{2} - 6 \, \log \relax (x) + 2\right )} x^{3} + \frac {1}{25} \, x^{4} + \frac {1}{2} \, {\left (2 \, \log \relax (x)^{4} - 4 \, \log \relax (x)^{3} + 6 \, \log \relax (x)^{2} - 6 \, \log \relax (x) + 3\right )} x^{2} + \frac {1}{2} \, {\left (4 \, \log \relax (x)^{3} - 6 \, \log \relax (x)^{2} + 6 \, \log \relax (x) - 3\right )} x^{2} - 2 \, {\left (2 \, \log \relax (x)^{2} - 2 \, \log \relax (x) + 1\right )} x^{2} - \frac {8}{9} \, x^{3} + 6 \, x^{2} - \frac {4}{15} \, {\left (3 \, x^{5} - x^{3} + 15 \, x^{2}\right )} \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.31, size = 65, normalized size = 2.71 \begin {gather*} x^8-\frac {2\,x^6}{5}-2\,x^5\,{\ln \relax (x)}^2+4\,x^5+\frac {x^4}{25}+\frac {2\,x^3\,{\ln \relax (x)}^2}{5}-\frac {4\,x^3}{5}+x^2\,{\ln \relax (x)}^4-4\,x^2\,{\ln \relax (x)}^2+4\,x^2+x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 63, normalized size = 2.62 \begin {gather*} x^{8} - \frac {2 x^{6}}{5} + 4 x^{5} + \frac {x^{4}}{25} - \frac {4 x^{3}}{5} + x^{2} \log {\relax (x )}^{4} + 4 x^{2} + x + \left (- 2 x^{5} + \frac {2 x^{3}}{5} - 4 x^{2}\right ) \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________