Optimal. Leaf size=19 \[ e^{2-\frac {1+\frac {\log (x)}{x}}{x^2}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 79, normalized size of antiderivative = 4.16, number of steps used = 1, number of rules used = 1, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {2288} \begin {gather*} -\frac {e^{\frac {2 x-\frac {x+\log (x)}{x^2}}{x}} (-2 x-3 \log (x)+1)}{x^3 \left (\frac {\frac {2 (x+\log (x))}{x^3}-\frac {\frac {1}{x}+1}{x^2}+2}{x}-\frac {2 x-\frac {x+\log (x)}{x^2}}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {e^{\frac {2 x-\frac {x+\log (x)}{x^2}}{x}} (1-2 x-3 \log (x))}{x^3 \left (\frac {2-\frac {1+\frac {1}{x}}{x^2}+\frac {2 (x+\log (x))}{x^3}}{x}-\frac {2 x-\frac {x+\log (x)}{x^2}}{x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 1.00 \begin {gather*} e^{2-\frac {1}{x^2}} x^{1-\frac {1}{x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 20, normalized size = 1.05 \begin {gather*} x e^{\left (\frac {2 \, x^{3} - x - \log \relax (x)}{x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 1.05 \begin {gather*} x e^{\left (\frac {2 \, x^{3} - x - \log \relax (x)}{x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.95
method | result | size |
risch | \(x \,{\mathrm e}^{-\frac {-2 x^{3}+\ln \relax (x )+x}{x^{3}}}\) | \(18\) |
norman | \(x \,{\mathrm e}^{\frac {\frac {-x -\ln \relax (x )}{x^{2}}+2 x}{x}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 17, normalized size = 0.89 \begin {gather*} x e^{\left (-\frac {1}{x^{2}} - \frac {\log \relax (x)}{x^{3}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.43, size = 18, normalized size = 0.95 \begin {gather*} x^{1-\frac {1}{x^3}}\,{\mathrm {e}}^2\,{\mathrm {e}}^{-\frac {1}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 17, normalized size = 0.89 \begin {gather*} x e^{\frac {2 x + \frac {- x - \log {\relax (x )}}{x^{2}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________