Optimal. Leaf size=31 \[ \frac {\frac {1}{x}+\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{\log (5) \log \left (2 x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x \log (x)+\left (-x+\left (x+x^2-x^3\right ) \log (x)\right ) \log \left (2 x^2\right )+\left (-2 \log (x)+\left (-1+x^2\right ) \log (x) \log \left (2 x^2\right )\right ) \log (\log (x))+\left (2 x^2 \log (x)-2 x \log (x) \log (\log (x))\right ) \log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{-x^3 \log (5) \log (x) \log ^2\left (2 x^2\right )+x^2 \log (5) \log (x) \log ^2\left (2 x^2\right ) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x \log (x)-\left (-x+\left (x+x^2-x^3\right ) \log (x)\right ) \log \left (2 x^2\right )-\left (-2 \log (x)+\left (-1+x^2\right ) \log (x) \log \left (2 x^2\right )\right ) \log (\log (x))-\left (2 x^2 \log (x)-2 x \log (x) \log (\log (x))\right ) \log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x^2 \log (5) \log (x) \log ^2\left (2 x^2\right ) (x-\log (\log (x)))} \, dx\\ &=\frac {\int \frac {-2 x \log (x)-\left (-x+\left (x+x^2-x^3\right ) \log (x)\right ) \log \left (2 x^2\right )-\left (-2 \log (x)+\left (-1+x^2\right ) \log (x) \log \left (2 x^2\right )\right ) \log (\log (x))-\left (2 x^2 \log (x)-2 x \log (x) \log (\log (x))\right ) \log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x^2 \log (x) \log ^2\left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}\\ &=\frac {\int \left (\frac {-2 x \log (x)+x \log \left (2 x^2\right )-x \log (x) \log \left (2 x^2\right )-x^2 \log (x) \log \left (2 x^2\right )+x^3 \log (x) \log \left (2 x^2\right )+2 \log (x) \log (\log (x))+\log (x) \log \left (2 x^2\right ) \log (\log (x))-x^2 \log (x) \log \left (2 x^2\right ) \log (\log (x))}{x^2 \log (x) \log ^2\left (2 x^2\right ) (x-\log (\log (x)))}-\frac {2 \log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )}\right ) \, dx}{\log (5)}\\ &=\frac {\int \frac {-2 x \log (x)+x \log \left (2 x^2\right )-x \log (x) \log \left (2 x^2\right )-x^2 \log (x) \log \left (2 x^2\right )+x^3 \log (x) \log \left (2 x^2\right )+2 \log (x) \log (\log (x))+\log (x) \log \left (2 x^2\right ) \log (\log (x))-x^2 \log (x) \log \left (2 x^2\right ) \log (\log (x))}{x^2 \log (x) \log ^2\left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {\int \frac {x \log \left (2 x^2\right )+\log (x) \left (-2 x+2 \log (\log (x))+\log \left (2 x^2\right ) \left (x \left (-1-x+x^2\right )-\left (-1+x^2\right ) \log (\log (x))\right )\right )}{x^2 \log (x) \log ^2\left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {\int \left (\frac {-2-\log \left (2 x^2\right )+x^2 \log \left (2 x^2\right )}{x^2 \log ^2\left (2 x^2\right )}+\frac {1-x \log (x)}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))}\right ) \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {\int \frac {-2-\log \left (2 x^2\right )+x^2 \log \left (2 x^2\right )}{x^2 \log ^2\left (2 x^2\right )} \, dx}{\log (5)}+\frac {\int \frac {1-x \log (x)}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {\int \frac {-2+\left (-1+x^2\right ) \log \left (2 x^2\right )}{x^2 \log ^2\left (2 x^2\right )} \, dx}{\log (5)}+\frac {\int \left (-\frac {1}{\log \left (2 x^2\right ) (x-\log (\log (x)))}+\frac {1}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))}\right ) \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {\int \left (-\frac {2}{x^2 \log ^2\left (2 x^2\right )}+\frac {-1+x^2}{x^2 \log \left (2 x^2\right )}\right ) \, dx}{\log (5)}-\frac {\int \frac {1}{\log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}+\frac {\int \frac {1}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {\int \frac {-1+x^2}{x^2 \log \left (2 x^2\right )} \, dx}{\log (5)}-\frac {\int \frac {1}{\log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}+\frac {\int \frac {1}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {1}{x^2 \log ^2\left (2 x^2\right )} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {1}{x \log (5) \log \left (2 x^2\right )}+\frac {\int \left (\frac {1}{\log \left (2 x^2\right )}-\frac {1}{x^2 \log \left (2 x^2\right )}\right ) \, dx}{\log (5)}+\frac {\int \frac {1}{x^2 \log \left (2 x^2\right )} \, dx}{\log (5)}-\frac {\int \frac {1}{\log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}+\frac {\int \frac {1}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ &=\frac {1}{x \log (5) \log \left (2 x^2\right )}+\frac {\int \frac {1}{\log \left (2 x^2\right )} \, dx}{\log (5)}-\frac {\int \frac {1}{x^2 \log \left (2 x^2\right )} \, dx}{\log (5)}-\frac {\int \frac {1}{\log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}+\frac {\int \frac {1}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}+\frac {\sqrt {x^2} \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,\log \left (2 x^2\right )\right )}{\sqrt {2} x \log (5)}\\ &=\frac {\sqrt {x^2} \text {Ei}\left (-\frac {1}{2} \log \left (2 x^2\right )\right )}{\sqrt {2} x \log (5)}+\frac {1}{x \log (5) \log \left (2 x^2\right )}-\frac {\int \frac {1}{\log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}+\frac {\int \frac {1}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}+\frac {x \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (2 x^2\right )\right )}{2 \sqrt {2} \sqrt {x^2} \log (5)}-\frac {\sqrt {x^2} \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,\log \left (2 x^2\right )\right )}{\sqrt {2} x \log (5)}\\ &=\frac {x \text {Ei}\left (\frac {1}{2} \log \left (2 x^2\right )\right )}{2 \sqrt {2} \sqrt {x^2} \log (5)}+\frac {1}{x \log (5) \log \left (2 x^2\right )}-\frac {\int \frac {1}{\log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}+\frac {\int \frac {1}{x \log (x) \log \left (2 x^2\right ) (x-\log (\log (x)))} \, dx}{\log (5)}-\frac {2 \int \frac {\log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log ^2\left (2 x^2\right )} \, dx}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 34, normalized size = 1.10 \begin {gather*} \frac {1+x \log \left (\frac {e^x}{-x+\log (\log (x))}\right )}{x \log (5) \log \left (2 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 35, normalized size = 1.13 \begin {gather*} \frac {x \log \left (-\frac {e^{x}}{x - \log \left (\log \relax (x)\right )}\right ) + 1}{x \log \relax (5) \log \relax (2) + 2 \, x \log \relax (5) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.40, size = 293, normalized size = 9.45
method | result | size |
risch | \(\frac {2 i \ln \left ({\mathrm e}^{x}\right )}{\ln \relax (5) \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )\right )}+\frac {-2 i x \ln \left (x -\ln \left (\ln \relax (x )\right )\right )+2 \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x -\ln \left (\ln \relax (x )\right )}\right )^{2}+\pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i}{x -\ln \left (\ln \relax (x )\right )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x -\ln \left (\ln \relax (x )\right )}\right )-\pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x -\ln \left (\ln \relax (x )\right )}\right )^{2}-\pi x \,\mathrm {csgn}\left (\frac {i}{x -\ln \left (\ln \relax (x )\right )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x -\ln \left (\ln \relax (x )\right )}\right )^{2}-\pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x -\ln \left (\ln \relax (x )\right )}\right )^{3}-2 \pi x +2 i}{\ln \relax (5) \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )\right ) x}\) | \(293\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 33, normalized size = 1.06 \begin {gather*} \frac {x^{2} - x \log \left (-x + \log \left (\log \relax (x)\right )\right ) + 1}{x \log \relax (5) \log \relax (2) + 2 \, x \log \relax (5) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.33, size = 34, normalized size = 1.10 \begin {gather*} \frac {x\,\ln \left (-\frac {{\mathrm {e}}^x}{x-\ln \left (\ln \relax (x)\right )}\right )+1}{x\,\ln \relax (5)\,\ln \left (2\,x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.75, size = 46, normalized size = 1.48 \begin {gather*} \frac {1}{2 x \log {\relax (5 )} \log {\relax (x )} + x \log {\relax (2 )} \log {\relax (5 )}} + \frac {\log {\left (\frac {e^{x}}{- x + \log {\left (\log {\relax (x )} \right )}} \right )}}{2 \log {\relax (5 )} \log {\relax (x )} + \log {\relax (2 )} \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________