Optimal. Leaf size=31 \[ -5+e^{e^x}-e^{x^2}-\left (x+x^2-\frac {5 x}{1+x}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 42, normalized size of antiderivative = 1.35, number of steps used = 7, number of rules used = 5, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {6688, 2282, 2194, 2209, 1620} \begin {gather*} -x^4-2 x^3+9 x^2-e^{x^2}+e^{e^x}+\frac {50}{x+1}-\frac {25}{(x+1)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1620
Rule 2194
Rule 2209
Rule 2282
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{e^x+x}-2 e^{x^2} x-\frac {2 x \left (16-24 x-16 x^2+6 x^3+9 x^4+2 x^5\right )}{(1+x)^3}\right ) \, dx\\ &=-\left (2 \int e^{x^2} x \, dx\right )-2 \int \frac {x \left (16-24 x-16 x^2+6 x^3+9 x^4+2 x^5\right )}{(1+x)^3} \, dx+\int e^{e^x+x} \, dx\\ &=-e^{x^2}-2 \int \left (-9 x+3 x^2+2 x^3-\frac {25}{(1+x)^3}+\frac {25}{(1+x)^2}\right ) \, dx+\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=e^{e^x}-e^{x^2}+9 x^2-2 x^3-x^4-\frac {25}{(1+x)^2}+\frac {50}{1+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 53, normalized size = 1.71 \begin {gather*} e^{e^x}-e^{x^2}-\frac {25}{(1+x)^2}+\frac {50}{1+x}-20 (1+x)+9 (1+x)^2+2 (1+x)^3-(1+x)^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 78, normalized size = 2.52 \begin {gather*} -\frac {{\left ({\left (x^{2} + 2 \, x + 1\right )} e^{\left (x^{2} + x\right )} - {\left (x^{2} + 2 \, x + 1\right )} e^{\left (x + e^{x}\right )} + {\left (x^{6} + 4 \, x^{5} - 4 \, x^{4} - 16 \, x^{3} - 9 \, x^{2} - 50 \, x - 25\right )} e^{x}\right )} e^{\left (-x\right )}}{x^{2} + 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 112, normalized size = 3.61 \begin {gather*} -\frac {x^{6} e^{x} + 4 \, x^{5} e^{x} - 4 \, x^{4} e^{x} - 16 \, x^{3} e^{x} + x^{2} e^{\left (x^{2} + x\right )} - x^{2} e^{\left (x + e^{x}\right )} - 9 \, x^{2} e^{x} + 2 \, x e^{\left (x^{2} + x\right )} - 2 \, x e^{\left (x + e^{x}\right )} - 50 \, x e^{x} + e^{\left (x^{2} + x\right )} - e^{\left (x + e^{x}\right )} - 25 \, e^{x}}{x^{2} e^{x} + 2 \, x e^{x} + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 42, normalized size = 1.35
method | result | size |
risch | \(-x^{4}-2 x^{3}+9 x^{2}+\frac {50 x +25}{x^{2}+2 x +1}-{\mathrm e}^{x^{2}}+{\mathrm e}^{{\mathrm e}^{x}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 127, normalized size = 4.10 \begin {gather*} -x^{4} - 2 \, x^{3} + 9 \, x^{2} - \frac {2 \, {\left (12 \, x + 11\right )}}{x^{2} + 2 \, x + 1} + \frac {9 \, {\left (10 \, x + 9\right )}}{x^{2} + 2 \, x + 1} - \frac {6 \, {\left (8 \, x + 7\right )}}{x^{2} + 2 \, x + 1} - \frac {16 \, {\left (6 \, x + 5\right )}}{x^{2} + 2 \, x + 1} + \frac {24 \, {\left (4 \, x + 3\right )}}{x^{2} + 2 \, x + 1} + \frac {16 \, {\left (2 \, x + 1\right )}}{x^{2} + 2 \, x + 1} - e^{\left (x^{2}\right )} + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.52, size = 41, normalized size = 1.32 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^x}-{\mathrm {e}}^{x^2}+\frac {50\,x+25}{x^2+2\,x+1}+9\,x^2-2\,x^3-x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 37, normalized size = 1.19 \begin {gather*} - x^{4} - 2 x^{3} + 9 x^{2} - \frac {- 50 x - 25}{x^{2} + 2 x + 1} - e^{x^{2}} + e^{e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________