Optimal. Leaf size=23 \[ \frac {-1-e^{e^{e^4}}-x^4+\log (x)}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 11, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {6742, 2353, 2302, 30, 2306, 2309, 2178} \begin {gather*} -\frac {x^4}{\log (x)}-\frac {1+e^{e^{e^4}}}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+e^{e^{e^4}}+x^4}{x \log ^2(x)}-\frac {4 x^3}{\log (x)}\right ) \, dx\\ &=-\left (4 \int \frac {x^3}{\log (x)} \, dx\right )+\int \frac {1+e^{e^{e^4}}+x^4}{x \log ^2(x)} \, dx\\ &=-\left (4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )\right )+\int \left (\frac {1+e^{e^{e^4}}}{x \log ^2(x)}+\frac {x^3}{\log ^2(x)}\right ) \, dx\\ &=-4 \text {Ei}(4 \log (x))+\left (1+e^{e^{e^4}}\right ) \int \frac {1}{x \log ^2(x)} \, dx+\int \frac {x^3}{\log ^2(x)} \, dx\\ &=-4 \text {Ei}(4 \log (x))-\frac {x^4}{\log (x)}+4 \int \frac {x^3}{\log (x)} \, dx+\left (1+e^{e^{e^4}}\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )\\ &=-4 \text {Ei}(4 \log (x))-\frac {1+e^{e^{e^4}}}{\log (x)}-\frac {x^4}{\log (x)}+4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {1+e^{e^{e^4}}}{\log (x)}-\frac {x^4}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 18, normalized size = 0.78 \begin {gather*} -\frac {1+e^{e^{e^4}}+x^4}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 15, normalized size = 0.65 \begin {gather*} -\frac {x^{4} + e^{\left (e^{\left (e^{4}\right )}\right )} + 1}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 15, normalized size = 0.65 \begin {gather*} -\frac {x^{4} + e^{\left (e^{\left (e^{4}\right )}\right )} + 1}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.70
method | result | size |
risch | \(-\frac {x^{4}+{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{4}}}+1}{\ln \relax (x )}\) | \(16\) |
norman | \(\frac {-x^{4}-1-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{4}}}}{\ln \relax (x )}\) | \(19\) |
default | \(-\frac {x^{4}}{\ln \relax (x )}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{4}}}}{\ln \relax (x )}-\frac {1}{\ln \relax (x )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 32, normalized size = 1.39 \begin {gather*} -\frac {e^{\left (e^{\left (e^{4}\right )}\right )}}{\log \relax (x)} - \frac {1}{\log \relax (x)} - 4 \, {\rm Ei}\left (4 \, \log \relax (x)\right ) + 4 \, \Gamma \left (-1, -4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.64, size = 15, normalized size = 0.65 \begin {gather*} -\frac {x^4+{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^4}}+1}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.65 \begin {gather*} \frac {- x^{4} - 1 - e^{e^{e^{4}}}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________