Optimal. Leaf size=13 \[ e^{e^{\frac {1}{4 x^8}}}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {14, 6715, 2282, 2194} \begin {gather*} e^{e^{\frac {1}{4 x^8}}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2282
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {2 e^{e^{\frac {1}{4 x^8}}+\frac {1}{4 x^8}}}{x^9}\right ) \, dx\\ &=x-2 \int \frac {e^{e^{\frac {1}{4 x^8}}+\frac {1}{4 x^8}}}{x^9} \, dx\\ &=x+\frac {1}{4} \operatorname {Subst}\left (\int e^{e^{x/4}+\frac {x}{4}} \, dx,x,\frac {1}{x^8}\right )\\ &=x+\operatorname {Subst}\left (\int e^x \, dx,x,e^{\frac {1}{4 x^8}}\right )\\ &=e^{e^{\frac {1}{4 x^8}}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 13, normalized size = 1.00 \begin {gather*} e^{e^{\frac {1}{4 x^8}}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 35, normalized size = 2.69 \begin {gather*} {\left (x e^{\left (\frac {1}{4 \, x^{8}}\right )} + e^{\left (\frac {4 \, x^{8} e^{\left (\frac {1}{4 \, x^{8}}\right )} + 1}{4 \, x^{8}}\right )}\right )} e^{\left (-\frac {1}{4 \, x^{8}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 35, normalized size = 2.69 \begin {gather*} {\left (x e^{\left (\frac {1}{4 \, x^{8}}\right )} + e^{\left (\frac {4 \, x^{8} e^{\left (\frac {1}{4 \, x^{8}}\right )} + 1}{4 \, x^{8}}\right )}\right )} e^{\left (-\frac {1}{4 \, x^{8}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 10, normalized size = 0.77
method | result | size |
default | \({\mathrm e}^{{\mathrm e}^{\frac {1}{4 x^{8}}}}+x\) | \(10\) |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {1}{4 x^{8}}}}+x\) | \(10\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 9, normalized size = 0.69 \begin {gather*} x + e^{\left (e^{\left (\frac {1}{4 \, x^{8}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.99, size = 9, normalized size = 0.69 \begin {gather*} x+{\mathrm {e}}^{{\mathrm {e}}^{\frac {1}{4\,x^8}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 10, normalized size = 0.77 \begin {gather*} x + e^{e^{\frac {1}{4 x^{8}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________