Optimal. Leaf size=25 \[ \frac {2}{x}-\frac {x}{2}-\log \left (4 e^{-1+2 x}\right )+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 13, normalized size of antiderivative = 0.52, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 14} \begin {gather*} -\frac {5 x}{2}+\frac {2}{x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-4+2 x-5 x^2}{x^2} \, dx\\ &=\frac {1}{2} \int \left (-5-\frac {4}{x^2}+\frac {2}{x}\right ) \, dx\\ &=\frac {2}{x}-\frac {5 x}{2}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 13, normalized size = 0.52 \begin {gather*} \frac {2}{x}-\frac {5 x}{2}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 17, normalized size = 0.68 \begin {gather*} -\frac {5 \, x^{2} - 2 \, x \log \relax (x) - 4}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 12, normalized size = 0.48 \begin {gather*} -\frac {5}{2} \, x + \frac {2}{x} + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 12, normalized size = 0.48
method | result | size |
default | \(-\frac {5 x}{2}+\ln \relax (x )+\frac {2}{x}\) | \(12\) |
risch | \(-\frac {5 x}{2}+\ln \relax (x )+\frac {2}{x}\) | \(12\) |
norman | \(\frac {2-\frac {5 x^{2}}{2}}{x}+\ln \relax (x )\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 11, normalized size = 0.44 \begin {gather*} -\frac {5}{2} \, x + \frac {2}{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.03, size = 11, normalized size = 0.44 \begin {gather*} \ln \relax (x)-\frac {5\,x}{2}+\frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 10, normalized size = 0.40 \begin {gather*} - \frac {5 x}{2} + \log {\relax (x )} + \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________