Optimal. Leaf size=25 \[ 5 x+e^{(7+x) \left (-5 \left (e+e^x\right )+x\right )} \left (2+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (5+\exp \left (e (-35-5 x)+e^x (-35-5 x)+7 x+x^2\right ) \left (14+6 x+7 x^2+2 x^3+e \left (-10-5 x^2\right )+e^x \left (-80-10 x-40 x^2-5 x^3\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=5 x+\int \exp \left (e (-35-5 x)+e^x (-35-5 x)+7 x+x^2\right ) \left (14+6 x+7 x^2+2 x^3+e \left (-10-5 x^2\right )+e^x \left (-80-10 x-40 x^2-5 x^3\right )\right ) \, dx\\ &=5 x+\int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} \left (14+6 x+7 x^2+2 x^3+e \left (-10-5 x^2\right )+e^x \left (-80-10 x-40 x^2-5 x^3\right )\right ) \, dx\\ &=5 x+\int \left (14 e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )}+6 e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x+7 e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^2+2 e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^3-5 e^{1-\left (5 e+5 e^x-x\right ) (7+x)} \left (2+x^2\right )-5 e^{x-\left (5 e+5 e^x-x\right ) (7+x)} \left (16+2 x+8 x^2+x^3\right )\right ) \, dx\\ &=5 x+2 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^3 \, dx-5 \int e^{1-\left (5 e+5 e^x-x\right ) (7+x)} \left (2+x^2\right ) \, dx-5 \int e^{x-\left (5 e+5 e^x-x\right ) (7+x)} \left (16+2 x+8 x^2+x^3\right ) \, dx+6 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x \, dx+7 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^2 \, dx+14 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} \, dx\\ &=5 x+2 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^3 \, dx-5 \int \left (2 e^{1-\left (5 e+5 e^x-x\right ) (7+x)}+e^{1-\left (5 e+5 e^x-x\right ) (7+x)} x^2\right ) \, dx-5 \int \left (16 e^{x-\left (5 e+5 e^x-x\right ) (7+x)}+2 e^{x-\left (5 e+5 e^x-x\right ) (7+x)} x+8 e^{x-\left (5 e+5 e^x-x\right ) (7+x)} x^2+e^{x-\left (5 e+5 e^x-x\right ) (7+x)} x^3\right ) \, dx+6 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x \, dx+7 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^2 \, dx+14 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} \, dx\\ &=5 x+2 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^3 \, dx-5 \int e^{1-\left (5 e+5 e^x-x\right ) (7+x)} x^2 \, dx-5 \int e^{x-\left (5 e+5 e^x-x\right ) (7+x)} x^3 \, dx+6 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x \, dx+7 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} x^2 \, dx-10 \int e^{1-\left (5 e+5 e^x-x\right ) (7+x)} \, dx-10 \int e^{x-\left (5 e+5 e^x-x\right ) (7+x)} x \, dx+14 \int e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} \, dx-40 \int e^{x-\left (5 e+5 e^x-x\right ) (7+x)} x^2 \, dx-80 \int e^{x-\left (5 e+5 e^x-x\right ) (7+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.33, size = 29, normalized size = 1.16 \begin {gather*} 5 x+e^{-\left (\left (5 e+5 e^x-x\right ) (7+x)\right )} \left (2+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 32, normalized size = 1.28 \begin {gather*} {\left (x^{2} + 2\right )} e^{\left (x^{2} - 5 \, {\left (x + 7\right )} e - 5 \, {\left (x + 7\right )} e^{x} + 7 \, x\right )} + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 68, normalized size = 2.72 \begin {gather*} {\left (x^{2} e^{\left (x^{2} - 5 \, x e - 5 \, x e^{x} + 7 \, x - 35 \, e - 35 \, e^{x} + 1\right )} + 2 \, e^{\left (x^{2} - 5 \, x e - 5 \, x e^{x} + 7 \, x - 35 \, e - 35 \, e^{x} + 1\right )}\right )} e^{\left (-1\right )} + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 29, normalized size = 1.16
method | result | size |
risch | \(\left (x^{2}+2\right ) {\mathrm e}^{-\left (x +7\right ) \left (-x +5 \,{\mathrm e}+5 \,{\mathrm e}^{x}\right )}+5 x\) | \(29\) |
default | \(5 x +x^{2} {\mathrm e}^{\left (-5 x -35\right ) {\mathrm e}^{x}+\left (-5 x -35\right ) {\mathrm e}+x^{2}+7 x}+2 \,{\mathrm e}^{\left (-5 x -35\right ) {\mathrm e}^{x}+\left (-5 x -35\right ) {\mathrm e}+x^{2}+7 x}\) | \(59\) |
norman | \(5 x +x^{2} {\mathrm e}^{\left (-5 x -35\right ) {\mathrm e}^{x}+\left (-5 x -35\right ) {\mathrm e}+x^{2}+7 x}+2 \,{\mathrm e}^{\left (-5 x -35\right ) {\mathrm e}^{x}+\left (-5 x -35\right ) {\mathrm e}+x^{2}+7 x}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 36, normalized size = 1.44 \begin {gather*} {\left (x^{2} + 2\right )} e^{\left (x^{2} - 5 \, x e - 5 \, x e^{x} + 7 \, x - 35 \, e - 35 \, e^{x}\right )} + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 70, normalized size = 2.80 \begin {gather*} 5\,x+2\,{\mathrm {e}}^{-5\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-35\,\mathrm {e}}\,{\mathrm {e}}^{7\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-5\,x\,\mathrm {e}}\,{\mathrm {e}}^{-35\,{\mathrm {e}}^x}+x^2\,{\mathrm {e}}^{-5\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-35\,\mathrm {e}}\,{\mathrm {e}}^{7\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-5\,x\,\mathrm {e}}\,{\mathrm {e}}^{-35\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 36, normalized size = 1.44 \begin {gather*} 5 x + \left (x^{2} + 2\right ) e^{x^{2} + 7 x + \left (- 5 x - 35\right ) e^{x} + e \left (- 5 x - 35\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________