Optimal. Leaf size=17 \[ -8+e^{2+10 e^{-x}+\frac {1}{x}}+x \]
________________________________________________________________________________________
Rubi [F] time = 0.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (e^x x^2+e^{10 e^{-x}} \left (-e^{x+\frac {1+2 x}{x}}-10 e^{\frac {1+2 x}{x}} x^2\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-10 e^{2+10 e^{-x}+\frac {1}{x}-x}-\frac {e^{2+10 e^{-x}+\frac {1}{x}}}{x^2}\right ) \, dx\\ &=x-10 \int e^{2+10 e^{-x}+\frac {1}{x}-x} \, dx-\int \frac {e^{2+10 e^{-x}+\frac {1}{x}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 16, normalized size = 0.94 \begin {gather*} e^{2+10 e^{-x}+\frac {1}{x}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 30, normalized size = 1.76 \begin {gather*} {\left (x e^{x} + e^{\left (\frac {x^{2} + 2 \, x + 1}{x} + 10 \, e^{\left (-x\right )}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 14, normalized size = 0.82 \begin {gather*} x + e^{\left (\frac {1}{x} + 10 \, e^{\left (-x\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 20, normalized size = 1.18
method | result | size |
risch | \({\mathrm e}^{\frac {10 x \,{\mathrm e}^{-x}+2 x +1}{x}}+x\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 14, normalized size = 0.82 \begin {gather*} x + e^{\left (\frac {1}{x} + 10 \, e^{\left (-x\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.39, size = 16, normalized size = 0.94 \begin {gather*} x+{\mathrm {e}}^{10\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{1/x}\,{\mathrm {e}}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 24.41, size = 15, normalized size = 0.88 \begin {gather*} x + e^{\frac {2 x + 1}{x}} e^{10 e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________