Optimal. Leaf size=10 \[ e^{4+x} \log \left (x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 10, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {14, 2178, 2194, 2554, 12} \begin {gather*} e^{x+4} \log \left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2178
Rule 2194
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{4+x}}{x}+e^{4+x} \log \left (x^2\right )\right ) \, dx\\ &=2 \int \frac {e^{4+x}}{x} \, dx+\int e^{4+x} \log \left (x^2\right ) \, dx\\ &=2 e^4 \text {Ei}(x)+e^{4+x} \log \left (x^2\right )-\int \frac {2 e^{4+x}}{x} \, dx\\ &=2 e^4 \text {Ei}(x)+e^{4+x} \log \left (x^2\right )-2 \int \frac {e^{4+x}}{x} \, dx\\ &=e^{4+x} \log \left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 10, normalized size = 1.00 \begin {gather*} e^{4+x} \log \left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 9, normalized size = 0.90 \begin {gather*} e^{\left (x + 4\right )} \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 9, normalized size = 0.90 \begin {gather*} e^{\left (x + 4\right )} \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 10, normalized size = 1.00
method | result | size |
norman | \(\ln \left (x^{2}\right ) {\mathrm e}^{4} {\mathrm e}^{x}\) | \(10\) |
default | \({\mathrm e}^{4} \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right ) {\mathrm e}^{x}+2 \,{\mathrm e}^{4} {\mathrm e}^{x} \ln \relax (x )\) | \(24\) |
risch | \(2 \,{\mathrm e}^{4+x} \ln \relax (x )-\frac {i \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \mathrm {csgn}\left (i x^{2}\right ) \pi \,{\mathrm e}^{4+x}}{2}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 9, normalized size = 0.90 \begin {gather*} e^{\left (x + 4\right )} \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.81, size = 9, normalized size = 0.90 \begin {gather*} \ln \left (x^2\right )\,{\mathrm {e}}^4\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 10, normalized size = 1.00 \begin {gather*} e^{4} e^{x} \log {\left (x^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________