Optimal. Leaf size=25 \[ -5+2 x+x^2-\log \left (2+e^4-\log (\log (4-x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 3, integrand size = 99, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {6688, 6742, 6684} \begin {gather*} (x+1)^2-\log \left (-\log (\log (4-x))+e^4+2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8+6 x-2 x^2-\frac {1}{\log (4-x) \left (2+e^4-\log (\log (4-x))\right )}}{4-x} \, dx\\ &=\int \left (2 (1+x)+\frac {1}{(-4+x) \log (4-x) \left (2 \left (1+\frac {e^4}{2}\right )-\log (\log (4-x))\right )}\right ) \, dx\\ &=(1+x)^2+\int \frac {1}{(-4+x) \log (4-x) \left (2 \left (1+\frac {e^4}{2}\right )-\log (\log (4-x))\right )} \, dx\\ &=(1+x)^2-\log \left (2+e^4-\log (\log (4-x))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 0.96 \begin {gather*} 2 x+x^2-\log \left (2+e^4-\log (\log (4-x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 23, normalized size = 0.92 \begin {gather*} x^{2} + 2 \, x - \log \left (-e^{4} + \log \left (\log \left (-x + 4\right )\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 23, normalized size = 0.92 \begin {gather*} x^{2} + 2 \, x - \log \left (-e^{4} + \log \left (\log \left (-x + 4\right )\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 24, normalized size = 0.96
method | result | size |
default | \(2 x -\ln \left (2-\ln \left (\ln \left (-x +4\right )\right )+{\mathrm e}^{4}\right )+x^{2}\) | \(24\) |
norman | \(2 x -\ln \left (2-\ln \left (\ln \left (-x +4\right )\right )+{\mathrm e}^{4}\right )+x^{2}\) | \(24\) |
risch | \(x^{2}+2 x -\ln \left (-{\mathrm e}^{4}+\ln \left (\ln \left (-x +4\right )\right )-2\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 173, normalized size = 6.92 \begin {gather*} 8 \, e^{4} \log \left (-x + 4\right ) \log \left (-e^{4} + \log \left (\log \left (-x + 4\right )\right ) - 2\right ) + 8 \, e^{\left (e^{4} + 2\right )} E_{1}\left (e^{4} - \log \left (\log \left (-x + 4\right )\right ) + 2\right ) \log \left (\log \left (-x + 4\right )\right ) + x^{2} - 8 \, {\left (e^{\left (e^{4} + 2\right )} E_{1}\left (e^{4} - \log \left (\log \left (-x + 4\right )\right ) + 2\right ) + \log \left (-x + 4\right ) \log \left (-e^{4} + \log \left (\log \left (-x + 4\right )\right ) - 2\right )\right )} e^{4} - 8 \, e^{\left (e^{4} + 2\right )} E_{2}\left (e^{4} - \log \left (\log \left (-x + 4\right )\right ) + 2\right ) - 16 \, e^{\left (e^{4} + 2\right )} E_{1}\left (e^{4} - \log \left (\log \left (-x + 4\right )\right ) + 2\right ) + 2 \, x + 8 \, \log \left (x - 4\right ) - \log \left (-e^{4} + \log \left (\log \left (-x + 4\right )\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.66, size = 23, normalized size = 0.92 \begin {gather*} 2\,x-\ln \left (\ln \left (\ln \left (4-x\right )\right )-{\mathrm {e}}^4-2\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 19, normalized size = 0.76 \begin {gather*} x^{2} + 2 x - \log {\left (\log {\left (\log {\left (4 - x \right )} \right )} - e^{4} - 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________