Optimal. Leaf size=26 \[ \frac {-2 x+\left (\log (4)-e^{\frac {7}{5}-x} \log (5)\right )^2}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 44, normalized size of antiderivative = 1.69, number of steps used = 4, number of rules used = 2, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {14, 2197} \begin {gather*} \frac {e^{\frac {14}{5}-2 x} \log ^2(5)}{x}+\frac {\log ^2(4)}{x}-\frac {2 e^{\frac {7}{5}-x} \log (4) \log (5)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {\log ^2(4)}{x^2}+\frac {2 e^{\frac {7}{5}-x} (1+x) \log (4) \log (5)}{x^2}-\frac {e^{\frac {14}{5}-2 x} (1+2 x) \log ^2(5)}{x^2}\right ) \, dx\\ &=\frac {\log ^2(4)}{x}+(2 \log (4) \log (5)) \int \frac {e^{\frac {7}{5}-x} (1+x)}{x^2} \, dx-\log ^2(5) \int \frac {e^{\frac {14}{5}-2 x} (1+2 x)}{x^2} \, dx\\ &=\frac {\log ^2(4)}{x}-\frac {2 e^{\frac {7}{5}-x} \log (4) \log (5)}{x}+\frac {e^{\frac {14}{5}-2 x} \log ^2(5)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 43, normalized size = 1.65 \begin {gather*} \frac {2 \log ^2(4)+e^{\frac {14}{5}-2 x} \log (5) \log (25)-e^{\frac {7}{5}-x} \log (16) \log (25)}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.20, size = 38, normalized size = 1.46 \begin {gather*} -\frac {4 \, e^{\left (-x + \log \left (\log \relax (5)\right ) + \frac {7}{5}\right )} \log \relax (2) - 4 \, \log \relax (2)^{2} - e^{\left (-2 \, x + 2 \, \log \left (\log \relax (5)\right ) + \frac {14}{5}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 34, normalized size = 1.31 \begin {gather*} \frac {e^{\left (-2 \, x + \frac {14}{5}\right )} \log \relax (5)^{2} - 4 \, e^{\left (-x + \frac {7}{5}\right )} \log \relax (5) \log \relax (2) + 4 \, \log \relax (2)^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 36, normalized size = 1.38
method | result | size |
norman | \(\frac {\ln \relax (5)^{2} {\mathrm e}^{\frac {14}{5}-2 x}+4 \ln \relax (2)^{2}-4 \ln \relax (2) {\mathrm e}^{\ln \left (\ln \relax (5)\right )+\frac {7}{5}-x}}{x}\) | \(36\) |
risch | \(\frac {\ln \relax (5)^{2} {\mathrm e}^{\frac {14}{5}-2 x}}{x}+\frac {4 \ln \relax (2)^{2}}{x}-\frac {4 \ln \relax (2) \ln \relax (5) {\mathrm e}^{\frac {7}{5}-x}}{x}\) | \(40\) |
derivativedivides | \(\frac {\ln \relax (5)^{2} {\mathrm e}^{\frac {14}{5}-2 x}}{x}+\frac {4 \ln \relax (2)^{2}}{x}-\frac {4 \ln \relax (2) {\mathrm e}^{\ln \left (\ln \relax (5)\right )+\frac {7}{5}-x}}{x}\) | \(42\) |
default | \(\frac {\ln \relax (5)^{2} {\mathrm e}^{\frac {14}{5}-2 x}}{x}+\frac {4 \ln \relax (2)^{2}}{x}-\frac {4 \ln \relax (2) {\mathrm e}^{\ln \left (\ln \relax (5)\right )+\frac {7}{5}-x}}{x}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 58, normalized size = 2.23 \begin {gather*} -2 \, {\rm Ei}\left (-2 \, x\right ) e^{\frac {14}{5}} \log \relax (5)^{2} + 2 \, e^{\frac {14}{5}} \Gamma \left (-1, 2 \, x\right ) \log \relax (5)^{2} + 4 \, {\rm Ei}\left (-x\right ) e^{\frac {7}{5}} \log \relax (5) \log \relax (2) - 4 \, e^{\frac {7}{5}} \Gamma \left (-1, x\right ) \log \relax (5) \log \relax (2) + \frac {4 \, \log \relax (2)^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 22, normalized size = 0.85 \begin {gather*} \frac {{\mathrm {e}}^{-2\,x}\,{\left ({\mathrm {e}}^{7/5}\,\ln \relax (5)-2\,{\mathrm {e}}^x\,\ln \relax (2)\right )}^2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 42, normalized size = 1.62 \begin {gather*} \frac {4 \log {\relax (2 )}^{2}}{x} + \frac {- 4 x e^{\frac {7}{5} - x} \log {\relax (2 )} \log {\relax (5 )} + x e^{\frac {14}{5} - 2 x} \log {\relax (5 )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________