Optimal. Leaf size=30 \[ -x+\frac {9+\log \left (3+e^4 \left (2 x-2 x^2\right )\right )}{2-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.88, antiderivative size = 38, normalized size of antiderivative = 1.27, number of steps used = 18, number of rules used = 11, integrand size = 99, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6741, 6688, 6728, 1628, 634, 618, 206, 628, 2525, 12, 800} \begin {gather*} \frac {\log \left (-2 e^4 x^2+2 e^4 x+3\right )}{2-x}-x+\frac {9}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 206
Rule 618
Rule 628
Rule 634
Rule 800
Rule 1628
Rule 2525
Rule 6688
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15+12 x-3 x^2-e^4 \left (-4-2 x^2+10 x^3-2 x^4\right )-\left (-3+e^4 \left (-2 x+2 x^2\right )\right ) \log \left (3+e^4 \left (2 x-2 x^2\right )\right )}{12-4 \left (3-2 e^4\right ) x+\left (3-16 e^4\right ) x^2+10 e^4 x^3-2 e^4 x^4} \, dx\\ &=\int \frac {-3 \left (-5-4 x+x^2\right )+2 e^4 \left (2+x^2-5 x^3+x^4\right )-\left (-3+2 e^4 (-1+x) x\right ) \log \left (3-2 e^4 (-1+x) x\right )}{(2-x)^2 \left (3+2 e^4 x-2 e^4 x^2\right )} \, dx\\ &=\int \left (\frac {15+4 e^4+12 x-\left (3-2 e^4\right ) x^2-10 e^4 x^3+2 e^4 x^4}{(2-x)^2 \left (3+2 e^4 x-2 e^4 x^2\right )}+\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{(2-x)^2}\right ) \, dx\\ &=\int \frac {15+4 e^4+12 x-\left (3-2 e^4\right ) x^2-10 e^4 x^3+2 e^4 x^4}{(2-x)^2 \left (3+2 e^4 x-2 e^4 x^2\right )} \, dx+\int \frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{(2-x)^2} \, dx\\ &=\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{2-x}-\int \frac {2 e^4 (1-2 x)}{(2-x) \left (3+2 e^4 x-2 e^4 x^2\right )} \, dx+\int \left (-1+\frac {9}{(-2+x)^2}-\frac {6 e^4}{\left (-3+4 e^4\right ) (-2+x)}+\frac {4 e^4 \left (3-e^4+3 e^4 x\right )}{\left (-3+4 e^4\right ) \left (-3-2 e^4 x+2 e^4 x^2\right )}\right ) \, dx\\ &=\frac {9}{2-x}-x+\frac {6 e^4 \log (2-x)}{3-4 e^4}+\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{2-x}-\left (2 e^4\right ) \int \frac {1-2 x}{(2-x) \left (3+2 e^4 x-2 e^4 x^2\right )} \, dx-\frac {\left (4 e^4\right ) \int \frac {3-e^4+3 e^4 x}{-3-2 e^4 x+2 e^4 x^2} \, dx}{3-4 e^4}\\ &=\frac {9}{2-x}-x+\frac {6 e^4 \log (2-x)}{3-4 e^4}+\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{2-x}-\left (2 e^4\right ) \int \left (-\frac {3}{\left (-3+4 e^4\right ) (-2+x)}+\frac {2 \left (3-e^4+3 e^4 x\right )}{\left (-3+4 e^4\right ) \left (-3-2 e^4 x+2 e^4 x^2\right )}\right ) \, dx-\frac {\left (3 e^4\right ) \int \frac {-2 e^4+4 e^4 x}{-3-2 e^4 x+2 e^4 x^2} \, dx}{3-4 e^4}-\frac {\left (2 e^4 \left (6+e^4\right )\right ) \int \frac {1}{-3-2 e^4 x+2 e^4 x^2} \, dx}{3-4 e^4}\\ &=\frac {9}{2-x}-x-\frac {3 e^4 \log \left (3+2 e^4 x-2 e^4 x^2\right )}{3-4 e^4}+\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{2-x}+\frac {\left (4 e^4\right ) \int \frac {3-e^4+3 e^4 x}{-3-2 e^4 x+2 e^4 x^2} \, dx}{3-4 e^4}+\frac {\left (4 e^4 \left (6+e^4\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 e^4 \left (6+e^4\right )-x^2} \, dx,x,-2 e^4+4 e^4 x\right )}{3-4 e^4}\\ &=\frac {9}{2-x}-x-\frac {2 e^2 \sqrt {6+e^4} \tanh ^{-1}\left (\frac {e^2 (1-2 x)}{\sqrt {6+e^4}}\right )}{3-4 e^4}-\frac {3 e^4 \log \left (3+2 e^4 x-2 e^4 x^2\right )}{3-4 e^4}+\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{2-x}+\frac {\left (3 e^4\right ) \int \frac {-2 e^4+4 e^4 x}{-3-2 e^4 x+2 e^4 x^2} \, dx}{3-4 e^4}+\frac {\left (2 e^4 \left (6+e^4\right )\right ) \int \frac {1}{-3-2 e^4 x+2 e^4 x^2} \, dx}{3-4 e^4}\\ &=\frac {9}{2-x}-x-\frac {2 e^2 \sqrt {6+e^4} \tanh ^{-1}\left (\frac {e^2 (1-2 x)}{\sqrt {6+e^4}}\right )}{3-4 e^4}+\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{2-x}-\frac {\left (4 e^4 \left (6+e^4\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 e^4 \left (6+e^4\right )-x^2} \, dx,x,-2 e^4+4 e^4 x\right )}{3-4 e^4}\\ &=\frac {9}{2-x}-x+\frac {\log \left (3+2 e^4 x-2 e^4 x^2\right )}{2-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 27, normalized size = 0.90 \begin {gather*} -\frac {9-2 x+x^2+\log \left (3-2 e^4 (-1+x) x\right )}{-2+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 29, normalized size = 0.97 \begin {gather*} -\frac {x^{2} - 2 \, x + \log \left (-2 \, {\left (x^{2} - x\right )} e^{4} + 3\right ) + 9}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 30, normalized size = 1.00 \begin {gather*} -\frac {x^{2} - 2 \, x + \log \left (-2 \, x^{2} e^{4} + 2 \, x e^{4} + 3\right ) + 9}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 31, normalized size = 1.03
method | result | size |
norman | \(\frac {-\ln \left (\left (-2 x^{2}+2 x \right ) {\mathrm e}^{4}+3\right )-x^{2}-5}{x -2}\) | \(31\) |
risch | \(-\frac {\ln \left (\left (-2 x^{2}+2 x \right ) {\mathrm e}^{4}+3\right )}{x -2}-\frac {x^{2}-2 x +9}{x -2}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 1175, normalized size = 39.17 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 10.56, size = 30, normalized size = 1.00 \begin {gather*} -\frac {\ln \left ({\mathrm {e}}^4\,\left (2\,x-2\,x^2\right )+3\right )-2\,x+x^2+9}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 26, normalized size = 0.87 \begin {gather*} - x - \frac {\log {\left (\left (- 2 x^{2} + 2 x\right ) e^{4} + 3 \right )}}{x - 2} - \frac {9}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________