Optimal. Leaf size=33 \[ \frac {\frac {1}{2}+x}{-3+\frac {e^{-\left (\left (x-x^2\right ) (x+\log (x))\right )} \log \left (\frac {21}{5}\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 36.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 e^{2 x^2-2 x^3+2 \left (x-x^2\right ) \log (x)} x^2+e^{x^2-x^3+\left (x-x^2\right ) \log (x)} \left (\left (1+5 x+3 x^2-x^3-6 x^4\right ) \log \left (\frac {21}{5}\right )+\left (x-4 x^3\right ) \log \left (\frac {21}{5}\right ) \log (x)\right )}{18 e^{2 x^2-2 x^3+2 \left (x-x^2\right ) \log (x)} x^2-12 e^{x^2-x^3+\left (x-x^2\right ) \log (x)} x \log \left (\frac {21}{5}\right )+2 \log ^2\left (\frac {21}{5}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{x^2} x^x \left (-6 e^{x^2} x^{2+x}-e^{x^3} x^{x^2} \left (-1-5 x-3 x^2+x^3+6 x^4\right ) \log \left (\frac {21}{5}\right )-e^{x^3} x^{1+x^2} \left (-1+4 x^2\right ) \log \left (\frac {21}{5}\right ) \log (x)\right )}{2 \left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{x^2} x^x \left (-6 e^{x^2} x^{2+x}-e^{x^3} x^{x^2} \left (-1-5 x-3 x^2+x^3+6 x^4\right ) \log \left (\frac {21}{5}\right )-e^{x^3} x^{1+x^2} \left (-1+4 x^2\right ) \log \left (\frac {21}{5}\right ) \log (x)\right )}{\left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {3 e^{2 x^2} x^{1+2 x} (1+2 x) \left (-1-x-x^2+3 x^3-x \log (x)+2 x^2 \log (x)\right )}{\left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2}+\frac {e^{x^2} x^x \left (-1-5 x-3 x^2+x^3+6 x^4-x \log (x)+4 x^3 \log (x)\right )}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{x^2} x^x \left (-1-5 x-3 x^2+x^3+6 x^4-x \log (x)+4 x^3 \log (x)\right )}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx-\frac {3}{2} \int \frac {e^{2 x^2} x^{1+2 x} (1+2 x) \left (-1-x-x^2+3 x^3-x \log (x)+2 x^2 \log (x)\right )}{\left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {e^{x^2} x^x}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}-\frac {5 e^{x^2} x^{1+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}-\frac {3 e^{x^2} x^{2+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}+\frac {e^{x^2} x^{3+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}+\frac {6 e^{x^2} x^{4+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}-\frac {e^{x^2} x^{1+x} \log (x)}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}+\frac {4 e^{x^2} x^{3+x} \log (x)}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )}\right ) \, dx-\frac {3}{2} \int \left (\frac {e^{2 x^2} x^{1+2 x} \left (-1-x-x^2+3 x^3-x \log (x)+2 x^2 \log (x)\right )}{\left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2}+\frac {2 e^{2 x^2} x^{2+2 x} \left (-1-x-x^2+3 x^3-x \log (x)+2 x^2 \log (x)\right )}{\left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {e^{x^2} x^x}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx\right )+\frac {1}{2} \int \frac {e^{x^2} x^{3+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx-\frac {1}{2} \int \frac {e^{x^2} x^{1+x} \log (x)}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx-\frac {3}{2} \int \frac {e^{x^2} x^{2+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx-\frac {3}{2} \int \frac {e^{2 x^2} x^{1+2 x} \left (-1-x-x^2+3 x^3-x \log (x)+2 x^2 \log (x)\right )}{\left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2} \, dx+2 \int \frac {e^{x^2} x^{3+x} \log (x)}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx-\frac {5}{2} \int \frac {e^{x^2} x^{1+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx+3 \int \frac {e^{x^2} x^{4+x}}{3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )} \, dx-3 \int \frac {e^{2 x^2} x^{2+2 x} \left (-1-x-x^2+3 x^3-x \log (x)+2 x^2 \log (x)\right )}{\left (3 e^{x^2} x^{1+x}-e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 49, normalized size = 1.48 \begin {gather*} \frac {e^{x^2} x^{1+x} (1+2 x)}{2 \left (-3 e^{x^2} x^{1+x}+e^{x^3} x^{x^2} \log \left (\frac {21}{5}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 62, normalized size = 1.88 \begin {gather*} -\frac {6 \, x^{2} e^{\left (-x^{3} + x^{2} - {\left (x^{2} - x\right )} \log \relax (x)\right )} + \log \left (\frac {21}{5}\right )}{6 \, {\left (3 \, x e^{\left (-x^{3} + x^{2} - {\left (x^{2} - x\right )} \log \relax (x)\right )} - \log \left (\frac {21}{5}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.06, size = 68, normalized size = 2.06 \begin {gather*} -\frac {6 \, x^{2} e^{\left (-x^{3} - x^{2} \log \relax (x) + x^{2} + x \log \relax (x)\right )} + \log \left (21\right ) - \log \relax (5)}{6 \, {\left (3 \, x e^{\left (-x^{3} - x^{2} \log \relax (x) + x^{2} + x \log \relax (x)\right )} - \log \left (21\right ) + \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 62, normalized size = 1.88
method | result | size |
risch | \(-\frac {x}{3}+\frac {2 x \ln \relax (7)-2 x \ln \relax (5)+2 x \ln \relax (3)+\ln \relax (7)-\ln \relax (5)+\ln \relax (3)}{-18 x \,x^{-x \left (x -1\right )} {\mathrm e}^{-x^{2} \left (x -1\right )}+6 \ln \relax (7)-6 \ln \relax (5)+6 \ln \relax (3)}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 54, normalized size = 1.64 \begin {gather*} \frac {{\left (2 \, x^{2} + x\right )} e^{\left (x^{2} + x \log \relax (x)\right )}}{2 \, {\left ({\left (\log \relax (7) - \log \relax (5) + \log \relax (3)\right )} e^{\left (x^{3} + x^{2} \log \relax (x)\right )} - 3 \, x e^{\left (x^{2} + x \log \relax (x)\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.25, size = 56, normalized size = 1.70 \begin {gather*} \frac {x^{x^2}\,\ln \left (\frac {21}{5}\right )+6\,x^x\,x^2\,{\mathrm {e}}^{x^2-x^3}}{6\,\left (x^{x^2}\,\ln \left (\frac {21}{5}\right )-3\,x\,x^x\,{\mathrm {e}}^{x^2-x^3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.59, size = 53, normalized size = 1.61 \begin {gather*} - \frac {x}{3} + \frac {- 2 x \log {\left (21 \right )} + 2 x \log {\relax (5 )} - \log {\left (21 \right )} + \log {\relax (5 )}}{18 x e^{- x^{3} + x^{2} + \left (- x^{2} + x\right ) \log {\relax (x )}} - 6 \log {\left (21 \right )} + 6 \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________