Optimal. Leaf size=17 \[ \frac {4}{e^{10} \left (1+\frac {625}{x}\right )+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 19, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {1680, 12, 1814, 8} \begin {gather*} \frac {4 x}{x^2+e^{10} x+625 e^{10}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {16 \left (e^{10} \left (2500-e^{10}\right )+4 e^{10} x-4 x^2\right )}{\left (2500 e^{10}-e^{20}+4 x^2\right )^2} \, dx,x,\frac {e^{10}}{2}+x\right )\\ &=16 \operatorname {Subst}\left (\int \frac {e^{10} \left (2500-e^{10}\right )+4 e^{10} x-4 x^2}{\left (2500 e^{10}-e^{20}+4 x^2\right )^2} \, dx,x,\frac {e^{10}}{2}+x\right )\\ &=\frac {4 x}{625 e^{10}+e^{10} x+x^2}-\frac {8 \operatorname {Subst}\left (\int 0 \, dx,x,\frac {e^{10}}{2}+x\right )}{e^{10} \left (2500-e^{10}\right )}\\ &=\frac {4 x}{625 e^{10}+e^{10} x+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.94 \begin {gather*} \frac {4 x}{x^2+e^{10} (625+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 15, normalized size = 0.88 \begin {gather*} \frac {4 \, x}{x^{2} + {\left (x + 625\right )} e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (x^{2} - 625 \, e^{10}\right )}}{x^{4} + {\left (x^{2} + 1250 \, x + 390625\right )} e^{20} + 2 \, {\left (x^{3} + 625 \, x^{2}\right )} e^{10}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 18, normalized size = 1.06
method | result | size |
risch | \(\frac {4 x}{x \,{\mathrm e}^{10}+625 \,{\mathrm e}^{10}+x^{2}}\) | \(18\) |
gosper | \(\frac {4 x}{x \,{\mathrm e}^{10}+625 \,{\mathrm e}^{10}+x^{2}}\) | \(22\) |
norman | \(\frac {4 x}{x \,{\mathrm e}^{10}+625 \,{\mathrm e}^{10}+x^{2}}\) | \(22\) |
default | \(2 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+2 \textit {\_Z}^{3} {\mathrm e}^{10}+\left ({\mathrm e}^{20}+1250 \,{\mathrm e}^{10}\right ) \textit {\_Z}^{2}+1250 \textit {\_Z} \,{\mathrm e}^{20}+390625 \,{\mathrm e}^{20}\right )}{\sum }\frac {\left (625 \,{\mathrm e}^{10}-\textit {\_R}^{2}\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R} \,{\mathrm e}^{20}+625 \,{\mathrm e}^{20}+3 \,{\mathrm e}^{10} \textit {\_R}^{2}+1250 \,{\mathrm e}^{10} \textit {\_R} +2 \textit {\_R}^{3}}\right )\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 17, normalized size = 1.00 \begin {gather*} \frac {4 \, x}{x^{2} + x e^{10} + 625 \, e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 17, normalized size = 1.00 \begin {gather*} \frac {4\,x}{x^2+{\mathrm {e}}^{10}\,x+625\,{\mathrm {e}}^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 0.88 \begin {gather*} \frac {4 x}{x^{2} + x e^{10} + 625 e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________