Optimal. Leaf size=24 \[ 1+x-\frac {5}{4} \left (x-\log \left (-\frac {4 x^2}{-2+e^x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {6741, 12, 6742, 2282, 36, 31, 29, 43} \begin {gather*} -\frac {x}{4}-\frac {5}{4} \log \left (2-e^x\right )+\frac {5 \log (x)}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 43
Rule 2282
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10-e^x (5-3 x)-x}{2 \left (2-e^x\right ) x} \, dx\\ &=\frac {1}{2} \int \frac {10-e^x (5-3 x)-x}{\left (2-e^x\right ) x} \, dx\\ &=\frac {1}{2} \int \left (-\frac {5}{-2+e^x}+\frac {5-3 x}{x}\right ) \, dx\\ &=\frac {1}{2} \int \frac {5-3 x}{x} \, dx-\frac {5}{2} \int \frac {1}{-2+e^x} \, dx\\ &=\frac {1}{2} \int \left (-3+\frac {5}{x}\right ) \, dx-\frac {5}{2} \operatorname {Subst}\left (\int \frac {1}{(-2+x) x} \, dx,x,e^x\right )\\ &=-\frac {3 x}{2}+\frac {5 \log (x)}{2}-\frac {5}{4} \operatorname {Subst}\left (\int \frac {1}{-2+x} \, dx,x,e^x\right )+\frac {5}{4} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )\\ &=-\frac {x}{4}-\frac {5}{4} \log \left (2-e^x\right )+\frac {5 \log (x)}{2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 22, normalized size = 0.92 \begin {gather*} \frac {1}{4} \left (-x-5 \log \left (2-e^x\right )+10 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 15, normalized size = 0.62 \begin {gather*} -\frac {1}{4} \, x + \frac {5}{2} \, \log \relax (x) - \frac {5}{4} \, \log \left (e^{x} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 15, normalized size = 0.62 \begin {gather*} -\frac {1}{4} \, x + \frac {5}{2} \, \log \relax (x) - \frac {5}{4} \, \log \left (e^{x} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 16, normalized size = 0.67
method | result | size |
norman | \(-\frac {x}{4}+\frac {5 \ln \relax (x )}{2}-\frac {5 \ln \left ({\mathrm e}^{x}-2\right )}{4}\) | \(16\) |
risch | \(-\frac {x}{4}+\frac {5 \ln \relax (x )}{2}-\frac {5 \ln \left ({\mathrm e}^{x}-2\right )}{4}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 15, normalized size = 0.62 \begin {gather*} -\frac {1}{4} \, x + \frac {5}{2} \, \log \relax (x) - \frac {5}{4} \, \log \left (e^{x} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 15, normalized size = 0.62 \begin {gather*} \frac {5\,\ln \relax (x)}{2}-\frac {5\,\ln \left ({\mathrm {e}}^x-2\right )}{4}-\frac {x}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.79 \begin {gather*} - \frac {x}{4} + \frac {5 \log {\relax (x )}}{2} - \frac {5 \log {\left (e^{x} - 2 \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________