Optimal. Leaf size=28 \[ \frac {1}{1+x (1+x)-\frac {4}{\log \left (\log \left (\frac {1}{2} x^2 (4-\log (3))\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 51.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8+\left (-x-2 x^2\right ) \log \left (\frac {1}{2} \left (4 x^2-x^2 \log (3)\right )\right ) \log ^2\left (\log \left (\frac {1}{2} \left (4 x^2-x^2 \log (3)\right )\right )\right )}{16 x \log \left (\frac {1}{2} \left (4 x^2-x^2 \log (3)\right )\right )+\left (-8 x-8 x^2-8 x^3\right ) \log \left (\frac {1}{2} \left (4 x^2-x^2 \log (3)\right )\right ) \log \left (\log \left (\frac {1}{2} \left (4 x^2-x^2 \log (3)\right )\right )\right )+\left (x+2 x^2+3 x^3+2 x^4+x^5\right ) \log \left (\frac {1}{2} \left (4 x^2-x^2 \log (3)\right )\right ) \log ^2\left (\log \left (\frac {1}{2} \left (4 x^2-x^2 \log (3)\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8-x (1+2 x) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \log ^2\left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (4-\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx\\ &=\int \left (\frac {-1-2 x}{\left (1+x+x^2\right )^2}-\frac {8 \left (1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{x \left (1+x+x^2\right )^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2}-\frac {8 (1+2 x)}{\left (1+x+x^2\right )^2 \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )}\right ) \, dx\\ &=-\left (8 \int \frac {1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )}{x \left (1+x+x^2\right )^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx\right )-8 \int \frac {1+2 x}{\left (1+x+x^2\right )^2 \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )} \, dx+\int \frac {-1-2 x}{\left (1+x+x^2\right )^2} \, dx\\ &=\frac {1}{1+x+x^2}-8 \int \frac {\left (1+x+x^2\right )^2+2 x (1+2 x) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )}{x \left (1+x+x^2\right )^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (4-\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx-8 \int \frac {-1-2 x}{\left (1+x+x^2\right )^2 \left (4-\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )} \, dx\\ &=\frac {1}{1+x+x^2}-8 \int \left (\frac {1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )}{x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2}-\frac {(1+x) \left (1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{\left (1+x+x^2\right )^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2}-\frac {(1+x) \left (1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{\left (1+x+x^2\right ) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2}\right ) \, dx-8 \int \left (\frac {1}{\left (1+x+x^2\right )^2 \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )}+\frac {2 x}{\left (1+x+x^2\right )^2 \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )}\right ) \, dx\\ &=\frac {1}{1+x+x^2}-8 \int \frac {1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )}{x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx+8 \int \frac {(1+x) \left (1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{\left (1+x+x^2\right )^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx+8 \int \frac {(1+x) \left (1+2 x+3 x^2+2 x^3+x^4+2 x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )+4 x^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{\left (1+x+x^2\right ) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx-8 \int \frac {1}{\left (1+x+x^2\right )^2 \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )} \, dx-16 \int \frac {x}{\left (1+x+x^2\right )^2 \left (-4+\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )+x^2 \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )} \, dx\\ &=\frac {1}{1+x+x^2}-8 \int \frac {\left (1+x+x^2\right )^2+2 x (1+2 x) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )}{x \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (4-\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx+8 \int \frac {(1+x) \left (\left (1+x+x^2\right )^2+2 x (1+2 x) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{\left (1+x+x^2\right )^2 \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (4-\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx+8 \int \frac {(1+x) \left (\left (1+x+x^2\right )^2+2 x (1+2 x) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{\left (1+x+x^2\right ) \log \left (-\frac {1}{2} x^2 (-4+\log (3))\right ) \left (4-\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )^2} \, dx-8 \int \frac {1}{\left (1+x+x^2\right )^2 \left (-4+\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )} \, dx-16 \int \frac {x}{\left (1+x+x^2\right )^2 \left (-4+\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.67, size = 38, normalized size = 1.36 \begin {gather*} \frac {\log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )}{-4+\left (1+x+x^2\right ) \log \left (\log \left (-\frac {1}{2} x^2 (-4+\log (3))\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 42, normalized size = 1.50 \begin {gather*} \frac {\log \left (\log \left (-\frac {1}{2} \, x^{2} \log \relax (3) + 2 \, x^{2}\right )\right )}{{\left (x^{2} + x + 1\right )} \log \left (\log \left (-\frac {1}{2} \, x^{2} \log \relax (3) + 2 \, x^{2}\right )\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.57, size = 140, normalized size = 5.00 \begin {gather*} \frac {4}{x^{4} \log \left (-\log \relax (2) + \log \left (-x^{2} \log \relax (3) + 4 \, x^{2}\right )\right ) + 2 \, x^{3} \log \left (-\log \relax (2) + \log \left (-x^{2} \log \relax (3) + 4 \, x^{2}\right )\right ) + 3 \, x^{2} \log \left (-\log \relax (2) + \log \left (-x^{2} \log \relax (3) + 4 \, x^{2}\right )\right ) - 4 \, x^{2} + 2 \, x \log \left (-\log \relax (2) + \log \left (-x^{2} \log \relax (3) + 4 \, x^{2}\right )\right ) - 4 \, x + \log \left (-\log \relax (2) + \log \left (-x^{2} \log \relax (3) + 4 \, x^{2}\right )\right ) - 4} + \frac {1}{x^{2} + x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (-2 x^{2}-x \right ) \ln \left (-\frac {x^{2} \ln \relax (3)}{2}+2 x^{2}\right ) \ln \left (\ln \left (-\frac {x^{2} \ln \relax (3)}{2}+2 x^{2}\right )\right )^{2}-8}{\left (x^{5}+2 x^{4}+3 x^{3}+2 x^{2}+x \right ) \ln \left (-\frac {x^{2} \ln \relax (3)}{2}+2 x^{2}\right ) \ln \left (\ln \left (-\frac {x^{2} \ln \relax (3)}{2}+2 x^{2}\right )\right )^{2}+\left (-8 x^{3}-8 x^{2}-8 x \right ) \ln \left (-\frac {x^{2} \ln \relax (3)}{2}+2 x^{2}\right ) \ln \left (\ln \left (-\frac {x^{2} \ln \relax (3)}{2}+2 x^{2}\right )\right )+16 x \ln \left (-\frac {x^{2} \ln \relax (3)}{2}+2 x^{2}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 46, normalized size = 1.64 \begin {gather*} \frac {\log \left (-\log \relax (2) + 2 \, \log \relax (x) + \log \left (-\log \relax (3) + 4\right )\right )}{{\left (x^{2} + x + 1\right )} \log \left (-\log \relax (2) + 2 \, \log \relax (x) + \log \left (-\log \relax (3) + 4\right )\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\ln \left (2\,x^2-\frac {x^2\,\ln \relax (3)}{2}\right )\,\left (2\,x^2+x\right )\,{\ln \left (\ln \left (2\,x^2-\frac {x^2\,\ln \relax (3)}{2}\right )\right )}^2+8}{\ln \left (2\,x^2-\frac {x^2\,\ln \relax (3)}{2}\right )\,\left (x^5+2\,x^4+3\,x^3+2\,x^2+x\right )\,{\ln \left (\ln \left (2\,x^2-\frac {x^2\,\ln \relax (3)}{2}\right )\right )}^2-\ln \left (2\,x^2-\frac {x^2\,\ln \relax (3)}{2}\right )\,\left (8\,x^3+8\,x^2+8\,x\right )\,\ln \left (\ln \left (2\,x^2-\frac {x^2\,\ln \relax (3)}{2}\right )\right )+16\,x\,\ln \left (2\,x^2-\frac {x^2\,\ln \relax (3)}{2}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 54, normalized size = 1.93 \begin {gather*} \frac {4}{- 4 x^{2} - 4 x + \left (x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 1\right ) \log {\left (\log {\left (- \frac {x^{2} \log {\relax (3 )}}{2} + 2 x^{2} \right )} \right )} - 4} + \frac {1}{x^{2} + x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________