Optimal. Leaf size=24 \[ e^{e^{e^{e^{e^x}+x^2+5 \left (-x+x^2\right )}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (e^{e^x}+e^{e^{e^{e^x}-5 x+6 x^2}}+e^{e^{e^x}-5 x+6 x^2}-5 x+6 x^2\right ) \left (-5+e^{e^x+x}+12 x\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-5 \exp \left (e^{e^x}+e^{e^{e^{e^x}-5 x+6 x^2}}+e^{e^{e^x}-5 x+6 x^2}-5 x+6 x^2\right )+\exp \left (e^{e^x}+e^{e^{e^{e^x}-5 x+6 x^2}}+e^x+e^{e^{e^x}-5 x+6 x^2}-4 x+6 x^2\right )+12 \exp \left (e^{e^x}+e^{e^{e^{e^x}-5 x+6 x^2}}+e^{e^{e^x}-5 x+6 x^2}-5 x+6 x^2\right ) x\right ) \, dx\\ &=-\left (5 \int \exp \left (e^{e^x}+e^{e^{e^{e^x}-5 x+6 x^2}}+e^{e^{e^x}-5 x+6 x^2}-5 x+6 x^2\right ) \, dx\right )+12 \int \exp \left (e^{e^x}+e^{e^{e^{e^x}-5 x+6 x^2}}+e^{e^{e^x}-5 x+6 x^2}-5 x+6 x^2\right ) x \, dx+\int \exp \left (e^{e^x}+e^{e^{e^{e^x}-5 x+6 x^2}}+e^x+e^{e^{e^x}-5 x+6 x^2}-4 x+6 x^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.23, size = 20, normalized size = 0.83 \begin {gather*} e^{e^{e^{e^{e^x}-5 x+6 x^2}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 128, normalized size = 5.33 \begin {gather*} e^{\left ({\left ({\left (6 \, x^{2} - 5 \, x\right )} e^{x} + e^{\left ({\left ({\left (6 \, x^{2} - 5 \, x\right )} e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} + x\right )} + e^{\left (x + e^{\left ({\left ({\left (6 \, x^{2} - 5 \, x\right )} e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )}\right )} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} - {\left ({\left (6 \, x^{2} - 5 \, x\right )} e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} - e^{\left ({\left ({\left (6 \, x^{2} - 5 \, x\right )} e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (12 \, x + e^{\left (x + e^{x}\right )} - 5\right )} e^{\left (6 \, x^{2} - 5 \, x + e^{\left (6 \, x^{2} - 5 \, x + e^{\left (e^{x}\right )}\right )} + e^{\left (e^{\left (6 \, x^{2} - 5 \, x + e^{\left (e^{x}\right )}\right )}\right )} + e^{\left (e^{x}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.67
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x}}+6 x^{2}-5 x}}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 15, normalized size = 0.62 \begin {gather*} e^{\left (e^{\left (e^{\left (6 \, x^{2} - 5 \, x + e^{\left (e^{x}\right )}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.74, size = 17, normalized size = 0.71 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{-5\,x}\,{\mathrm {e}}^{6\,x^2}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 55.77, size = 17, normalized size = 0.71 \begin {gather*} e^{e^{e^{6 x^{2} - 5 x + e^{e^{x}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________