Optimal. Leaf size=12 \[ -e^{5+6 x^3} x \]
________________________________________________________________________________________
Rubi [C] time = 0.05, antiderivative size = 62, normalized size of antiderivative = 5.17, number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {2226, 2208, 2218} \begin {gather*} \frac {e^5 x \Gamma \left (\frac {1}{3},-6 x^3\right )}{3 \sqrt [3]{6} \sqrt [3]{-x^3}}+\frac {e^5 x^4 \Gamma \left (\frac {4}{3},-6 x^3\right )}{\sqrt [3]{6} \left (-x^3\right )^{4/3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2208
Rule 2218
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{5+6 x^3}-18 e^{5+6 x^3} x^3\right ) \, dx\\ &=-\left (18 \int e^{5+6 x^3} x^3 \, dx\right )-\int e^{5+6 x^3} \, dx\\ &=\frac {e^5 x \Gamma \left (\frac {1}{3},-6 x^3\right )}{3 \sqrt [3]{6} \sqrt [3]{-x^3}}+\frac {e^5 x^4 \Gamma \left (\frac {4}{3},-6 x^3\right )}{\sqrt [3]{6} \left (-x^3\right )^{4/3}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.02, size = 43, normalized size = 3.58 \begin {gather*} \frac {e^5 x \left (\Gamma \left (\frac {1}{3},-6 x^3\right )-3 \Gamma \left (\frac {4}{3},-6 x^3\right )\right )}{3 \sqrt [3]{6} \sqrt [3]{-x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 11, normalized size = 0.92 \begin {gather*} -x e^{\left (6 \, x^{3} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 11, normalized size = 0.92 \begin {gather*} -x e^{\left (6 \, x^{3} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 12, normalized size = 1.00
method | result | size |
gosper | \(-x \,{\mathrm e}^{6 x^{3}+5}\) | \(12\) |
norman | \(-x \,{\mathrm e}^{6 x^{3}+5}\) | \(12\) |
risch | \(-x \,{\mathrm e}^{6 x^{3}+5}\) | \(12\) |
meijerg | \(-\frac {{\mathrm e}^{5} 6^{\frac {2}{3}} \left (-1\right )^{\frac {2}{3}} \left (\frac {2 x \left (-1\right )^{\frac {1}{3}} \pi \sqrt {3}}{9 \Gamma \left (\frac {2}{3}\right ) \left (-x^{3}\right )^{\frac {1}{3}}}-x 6^{\frac {1}{3}} \left (-1\right )^{\frac {1}{3}} {\mathrm e}^{6 x^{3}}-\frac {x \left (-1\right )^{\frac {1}{3}} \Gamma \left (\frac {1}{3}, -6 x^{3}\right )}{3 \left (-x^{3}\right )^{\frac {1}{3}}}\right )}{6}+\frac {{\mathrm e}^{5} 6^{\frac {2}{3}} \left (-1\right )^{\frac {2}{3}} \left (\frac {2 x \left (-1\right )^{\frac {1}{3}} \pi \sqrt {3}}{3 \Gamma \left (\frac {2}{3}\right ) \left (-x^{3}\right )^{\frac {1}{3}}}-\frac {x \left (-1\right )^{\frac {1}{3}} \Gamma \left (\frac {1}{3}, -6 x^{3}\right )}{\left (-x^{3}\right )^{\frac {1}{3}}}\right )}{18}\) | \(121\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 47, normalized size = 3.92 \begin {gather*} \frac {6^{\frac {2}{3}} x^{4} e^{5} \Gamma \left (\frac {4}{3}, -6 \, x^{3}\right )}{6 \, \left (-x^{3}\right )^{\frac {4}{3}}} + \frac {6^{\frac {2}{3}} x e^{5} \Gamma \left (\frac {1}{3}, -6 \, x^{3}\right )}{18 \, \left (-x^{3}\right )^{\frac {1}{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 11, normalized size = 0.92 \begin {gather*} -x\,{\mathrm {e}}^5\,{\mathrm {e}}^{6\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 10, normalized size = 0.83 \begin {gather*} - x e^{6 x^{3} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________