Optimal. Leaf size=21 \[ e^{4+x^{e^{46+\frac {1}{5} \left (e^5-x\right )}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} e^{4+x^{e^{\frac {1}{5} \left (230+e^5-x\right )}}} x^{-1+e^{\frac {1}{5} \left (230+e^5-x\right )}} \left (5 e^{\frac {1}{5} \left (230+e^5-x\right )}-e^{\frac {1}{5} \left (230+e^5-x\right )} x \log (x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{4+x^{e^{\frac {1}{5} \left (230+e^5-x\right )}}} x^{-1+e^{\frac {1}{5} \left (230+e^5-x\right )}} \left (5 e^{\frac {1}{5} \left (230+e^5-x\right )}-e^{\frac {1}{5} \left (230+e^5-x\right )} x \log (x)\right ) \, dx\\ &=\frac {1}{5} \int e^{50+\frac {e^5}{5}-\frac {x}{5}+x^{e^{\frac {1}{5} \left (230+e^5-x\right )}}} x^{-1+e^{\frac {1}{5} \left (230+e^5-x\right )}} (5-x \log (x)) \, dx\\ &=\frac {1}{5} \int \exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{-1+e^{\frac {1}{5} \left (230+e^5-x\right )}} (5-x \log (x)) \, dx\\ &=\frac {1}{5} \int \left (5 \exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{-1+e^{\frac {1}{5} \left (230+e^5-x\right )}}-\exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{e^{\frac {1}{5} \left (230+e^5-x\right )}} \log (x)\right ) \, dx\\ &=-\left (\frac {1}{5} \int \exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{e^{\frac {1}{5} \left (230+e^5-x\right )}} \log (x) \, dx\right )+\int \exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{-1+e^{\frac {1}{5} \left (230+e^5-x\right )}} \, dx\\ &=\frac {1}{5} \int \frac {\int \exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{e^{\frac {1}{5} \left (230+e^5\right )-\frac {x}{5}}} \, dx}{x} \, dx-\frac {1}{5} \log (x) \int \exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{e^{\frac {1}{5} \left (230+e^5\right )-\frac {x}{5}}} \, dx+\int \exp \left (\frac {1}{5} \left (250 \left (1+\frac {e^5}{250}\right )-x+5 x^{e^{46+\frac {e^5}{5}-\frac {x}{5}}}\right )\right ) x^{-1+e^{\frac {1}{5} \left (230+e^5-x\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 20, normalized size = 0.95 \begin {gather*} e^{4+x^{e^{\frac {1}{5} \left (230+e^5-x\right )}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 15, normalized size = 0.71 \begin {gather*} e^{\left (x^{e^{\left (-\frac {1}{5} \, x + \frac {1}{5} \, e^{5} + 46\right )}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 15, normalized size = 0.71 \begin {gather*} e^{\left (x^{e^{\left (-\frac {1}{5} \, x + \frac {1}{5} \, e^{5} + 46\right )}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 16, normalized size = 0.76
method | result | size |
risch | \({\mathrm e}^{x^{{\mathrm e}^{\frac {{\mathrm e}^{5}}{5}-\frac {x}{5}+46}}+4}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 15, normalized size = 0.71 \begin {gather*} e^{\left (x^{e^{\left (-\frac {1}{5} \, x + \frac {1}{5} \, e^{5} + 46\right )}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.73, size = 18, normalized size = 0.86 \begin {gather*} {\mathrm {e}}^4\,{\mathrm {e}}^{x^{{\mathrm {e}}^{\frac {{\mathrm {e}}^5}{5}}\,{\mathrm {e}}^{-\frac {x}{5}}\,{\mathrm {e}}^{46}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.55, size = 19, normalized size = 0.90 \begin {gather*} e^{e^{e^{- \frac {x}{5} + \frac {e^{5}}{5} + 46} \log {\relax (x )}} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________