Optimal. Leaf size=35 \[ e^{e^{e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 56.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{8} \exp \left (-2 e^5+\exp \left (\frac {1}{16} e^{-2 e^5} \left (16 e^{2+2 e^5}-4 x^4+4 x^5-x^6+\left (-4 x^3+2 x^4\right ) \log (5)-x^2 \log ^2(5)\right )\right )+\frac {1}{16} e^{-2 e^5} \left (16 e^{2+2 e^5}-4 x^4+4 x^5-x^6+\left (-4 x^3+2 x^4\right ) \log (5)-x^2 \log ^2(5)\right )\right ) \left (-8 x^3+10 x^4-3 x^5+\left (-6 x^2+4 x^3\right ) \log (5)-x \log ^2(5)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \exp \left (-2 e^5+\exp \left (\frac {1}{16} e^{-2 e^5} \left (16 e^{2+2 e^5}-4 x^4+4 x^5-x^6+\left (-4 x^3+2 x^4\right ) \log (5)-x^2 \log ^2(5)\right )\right )+\frac {1}{16} e^{-2 e^5} \left (16 e^{2+2 e^5}-4 x^4+4 x^5-x^6+\left (-4 x^3+2 x^4\right ) \log (5)-x^2 \log ^2(5)\right )\right ) \left (-8 x^3+10 x^4-3 x^5+\left (-6 x^2+4 x^3\right ) \log (5)-x \log ^2(5)\right ) \, dx\\ &=\frac {1}{8} \int \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x \left (10 x^3-3 x^4-4 x^2 (2-\log (5))-6 x \log (5)-\log ^2(5)\right ) \, dx\\ &=\frac {1}{8} \int \left (10 \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^4-3 \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^5+4 \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^3 (-2+\log (5))-6 \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^2 \log (5)-\exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x \log ^2(5)\right ) \, dx\\ &=-\left (\frac {3}{8} \int \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^5 \, dx\right )+\frac {5}{4} \int \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^4 \, dx+\frac {1}{2} (-2+\log (5)) \int \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^3 \, dx-\frac {1}{4} (3 \log (5)) \int \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x^2 \, dx-\frac {1}{8} \log ^2(5) \int \exp \left (\exp \left (e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right )+e^2 \left (1-2 e^3\right )-\frac {1}{16} e^{-2 e^5} x^2 \left (2 x-x^2+\log (5)\right )^2\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 60, normalized size = 1.71 \begin {gather*} e^{5^{\frac {1}{8} e^{-2 e^5} (-2+x) x^3} e^{e^2-\frac {1}{16} e^{-2 e^5} x^2 \left (4 x^2-4 x^3+x^4+\log ^2(5)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 174, normalized size = 4.97 \begin {gather*} e^{\left (-\frac {1}{16} \, {\left (x^{6} - 4 \, x^{5} + 4 \, x^{4} + x^{2} \log \relax (5)^{2} + 16 \, {\left (2 \, e^{5} - e^{2}\right )} e^{\left (2 \, e^{5}\right )} - 2 \, {\left (x^{4} - 2 \, x^{3}\right )} \log \relax (5) - 16 \, e^{\left (-\frac {1}{16} \, {\left (x^{6} - 4 \, x^{5} + 4 \, x^{4} + x^{2} \log \relax (5)^{2} - 2 \, {\left (x^{4} - 2 \, x^{3}\right )} \log \relax (5) - 16 \, e^{\left (2 \, e^{5} + 2\right )}\right )} e^{\left (-2 \, e^{5}\right )} + 2 \, e^{5}\right )}\right )} e^{\left (-2 \, e^{5}\right )} + \frac {1}{16} \, {\left (x^{6} - 4 \, x^{5} + 4 \, x^{4} + x^{2} \log \relax (5)^{2} - 2 \, {\left (x^{4} - 2 \, x^{3}\right )} \log \relax (5) - 16 \, e^{\left (2 \, e^{5} + 2\right )}\right )} e^{\left (-2 \, e^{5}\right )} + 2 \, e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 73, normalized size = 2.09 \begin {gather*} e^{\left (e^{\left (-\frac {1}{16} \, x^{6} e^{\left (-2 \, e^{5}\right )} + \frac {1}{4} \, x^{5} e^{\left (-2 \, e^{5}\right )} + \frac {1}{8} \, x^{4} e^{\left (-2 \, e^{5}\right )} \log \relax (5) - \frac {1}{4} \, x^{4} e^{\left (-2 \, e^{5}\right )} - \frac {1}{4} \, x^{3} e^{\left (-2 \, e^{5}\right )} \log \relax (5) - \frac {1}{16} \, x^{2} e^{\left (-2 \, e^{5}\right )} \log \relax (5)^{2} + e^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 55, normalized size = 1.57
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{-\frac {\left (x^{6}-2 x^{4} \ln \relax (5)-4 x^{5}+x^{2} \ln \relax (5)^{2}+4 x^{3} \ln \relax (5)+4 x^{4}-16 \,{\mathrm e}^{2 \,{\mathrm e}^{5}+2}\right ) {\mathrm e}^{-2 \,{\mathrm e}^{5}}}{16}}}\) | \(55\) |
norman | \({\mathrm e}^{{\mathrm e}^{\frac {\left (16 \,{\mathrm e}^{2} {\mathrm e}^{2 \,{\mathrm e}^{5}}-x^{2} \ln \relax (5)^{2}+\left (2 x^{4}-4 x^{3}\right ) \ln \relax (5)-x^{6}+4 x^{5}-4 x^{4}\right ) {\mathrm e}^{-2 \,{\mathrm e}^{5}}}{16}}}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 2.17, size = 73, normalized size = 2.09 \begin {gather*} e^{\left (e^{\left (-\frac {1}{16} \, x^{6} e^{\left (-2 \, e^{5}\right )} + \frac {1}{4} \, x^{5} e^{\left (-2 \, e^{5}\right )} + \frac {1}{8} \, x^{4} e^{\left (-2 \, e^{5}\right )} \log \relax (5) - \frac {1}{4} \, x^{4} e^{\left (-2 \, e^{5}\right )} - \frac {1}{4} \, x^{3} e^{\left (-2 \, e^{5}\right )} \log \relax (5) - \frac {1}{16} \, x^{2} e^{\left (-2 \, e^{5}\right )} \log \relax (5)^{2} + e^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 10.16, size = 75, normalized size = 2.14 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^{-2\,{\mathrm {e}}^5}\,{\ln \relax (5)}^2}{16}}\,{\mathrm {e}}^{-\frac {x^4\,{\mathrm {e}}^{-2\,{\mathrm {e}}^5}}{4}}\,{\mathrm {e}}^{\frac {x^5\,{\mathrm {e}}^{-2\,{\mathrm {e}}^5}}{4}}\,{\mathrm {e}}^{-\frac {x^6\,{\mathrm {e}}^{-2\,{\mathrm {e}}^5}}{16}}\,{\mathrm {e}}^{{\mathrm {e}}^2}}{5^{\frac {{\mathrm {e}}^{-2\,{\mathrm {e}}^5}\,\left (2\,x^3-x^4\right )}{8}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.75, size = 60, normalized size = 1.71 \begin {gather*} e^{e^{\frac {- \frac {x^{6}}{16} + \frac {x^{5}}{4} - \frac {x^{4}}{4} - \frac {x^{2} \log {\relax (5 )}^{2}}{16} + \frac {\left (2 x^{4} - 4 x^{3}\right ) \log {\relax (5 )}}{16} + e^{2} e^{2 e^{5}}}{e^{2 e^{5}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________