Optimal. Leaf size=21 \[ x \log \left (2 \left (2+e^x\right )\right ) \left (3+(5+\log (\log (12)))^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 45, normalized size of antiderivative = 2.14, number of steps used = 15, number of rules used = 10, integrand size = 120, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 6688, 12, 6742, 2184, 2190, 2279, 2391, 2282, 2392} \begin {gather*} x \left (28+\log ^2(\log (12))+10 \log (\log (12))\right )^2 \log \left (\frac {e^x}{2}+1\right )+x \log (4) \left (28+\log ^2(\log (12))+10 \log (\log (12))\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2184
Rule 2190
Rule 2279
Rule 2282
Rule 2391
Rule 2392
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {156 e^x x \log ^2(\log (12))+20 e^x x \log ^3(\log (12))+e^x x \log ^4(\log (12))+e^x x (784+560 \log (\log (12)))+\log \left (4+2 e^x\right ) \left (1568+784 e^x+\left (1120+560 e^x\right ) \log (\log (12))+\left (312+156 e^x\right ) \log ^2(\log (12))+\left (40+20 e^x\right ) \log ^3(\log (12))+\left (2+e^x\right ) \log ^4(\log (12))\right )}{2+e^x} \, dx\\ &=\int \frac {e^x x \log ^4(\log (12))+e^x x (784+560 \log (\log (12)))+e^x x \left (156 \log ^2(\log (12))+20 \log ^3(\log (12))\right )+\log \left (4+2 e^x\right ) \left (1568+784 e^x+\left (1120+560 e^x\right ) \log (\log (12))+\left (312+156 e^x\right ) \log ^2(\log (12))+\left (40+20 e^x\right ) \log ^3(\log (12))+\left (2+e^x\right ) \log ^4(\log (12))\right )}{2+e^x} \, dx\\ &=\int \frac {e^x x \left (156 \log ^2(\log (12))+20 \log ^3(\log (12))\right )+e^x x \left (784+560 \log (\log (12))+\log ^4(\log (12))\right )+\log \left (4+2 e^x\right ) \left (1568+784 e^x+\left (1120+560 e^x\right ) \log (\log (12))+\left (312+156 e^x\right ) \log ^2(\log (12))+\left (40+20 e^x\right ) \log ^3(\log (12))+\left (2+e^x\right ) \log ^4(\log (12))\right )}{2+e^x} \, dx\\ &=\int \frac {e^x x \left (784+560 \log (\log (12))+156 \log ^2(\log (12))+20 \log ^3(\log (12))+\log ^4(\log (12))\right )+\log \left (4+2 e^x\right ) \left (1568+784 e^x+\left (1120+560 e^x\right ) \log (\log (12))+\left (312+156 e^x\right ) \log ^2(\log (12))+\left (40+20 e^x\right ) \log ^3(\log (12))+\left (2+e^x\right ) \log ^4(\log (12))\right )}{2+e^x} \, dx\\ &=\int \frac {\left (e^x x+\left (2+e^x\right ) \log \left (2 \left (2+e^x\right )\right )\right ) \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2}{2+e^x} \, dx\\ &=\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \int \frac {e^x x+\left (2+e^x\right ) \log \left (2 \left (2+e^x\right )\right )}{2+e^x} \, dx\\ &=\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \int \left (x-\frac {2 x}{2+e^x}+\log \left (2 \left (2+e^x\right )\right )\right ) \, dx\\ &=\frac {1}{2} x^2 \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2+\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \int \log \left (2 \left (2+e^x\right )\right ) \, dx-\left (2 \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2\right ) \int \frac {x}{2+e^x} \, dx\\ &=\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \int \frac {e^x x}{2+e^x} \, dx+\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \operatorname {Subst}\left (\int \frac {\log (4+2 x)}{x} \, dx,x,e^x\right )\\ &=x \log (4) \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2+x \log \left (1+\frac {e^x}{2}\right ) \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2-\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \int \log \left (1+\frac {e^x}{2}\right ) \, dx+\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )\\ &=x \log (4) \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2+x \log \left (1+\frac {e^x}{2}\right ) \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2-\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \text {Li}_2\left (-\frac {e^x}{2}\right )-\left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )\\ &=x \log (4) \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2+x \log \left (1+\frac {e^x}{2}\right ) \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.05, size = 61, normalized size = 2.90 \begin {gather*} \left (28+10 \log (\log (12))+\log ^2(\log (12))\right )^2 \left (\frac {x^2}{2}+x \log (4)+x \log \left (1+2 e^{-x}\right )-\text {Li}_2\left (-2 e^{-x}\right )-\text {Li}_2\left (-\frac {e^x}{2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 41, normalized size = 1.95 \begin {gather*} {\left (x \log \left (\log \left (12\right )\right )^{4} + 20 \, x \log \left (\log \left (12\right )\right )^{3} + 156 \, x \log \left (\log \left (12\right )\right )^{2} + 560 \, x \log \left (\log \left (12\right )\right ) + 784 \, x\right )} \log \left (2 \, e^{x} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 100, normalized size = 4.76 \begin {gather*} x \log \relax (2) \log \left (\log \left (12\right )\right )^{4} + x \log \left (e^{x} + 2\right ) \log \left (\log \left (12\right )\right )^{4} + 20 \, x \log \relax (2) \log \left (\log \left (12\right )\right )^{3} + 20 \, x \log \left (e^{x} + 2\right ) \log \left (\log \left (12\right )\right )^{3} + 156 \, x \log \relax (2) \log \left (\log \left (12\right )\right )^{2} + 156 \, x \log \left (e^{x} + 2\right ) \log \left (\log \left (12\right )\right )^{2} + 560 \, x \log \relax (2) \log \left (\log \left (12\right )\right ) + 560 \, x \log \left (e^{x} + 2\right ) \log \left (\log \left (12\right )\right ) + 784 \, x \log \relax (2) + 784 \, x \log \left (e^{x} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 36, normalized size = 1.71
method | result | size |
norman | \(\left (\ln \left (\ln \left (12\right )\right )^{4}+20 \ln \left (\ln \left (12\right )\right )^{3}+156 \ln \left (\ln \left (12\right )\right )^{2}+560 \ln \left (\ln \left (12\right )\right )+784\right ) x \ln \left (2 \,{\mathrm e}^{x}+4\right )\) | \(36\) |
risch | \(\left (\ln \left (\ln \relax (3)+2 \ln \relax (2)\right )^{4}+20 \ln \left (\ln \relax (3)+2 \ln \relax (2)\right )^{3}+156 \ln \left (\ln \relax (3)+2 \ln \relax (2)\right )^{2}+560 \ln \left (\ln \relax (3)+2 \ln \relax (2)\right )+784\right ) x \ln \left (2 \,{\mathrm e}^{x}+4\right )\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 104, normalized size = 4.95 \begin {gather*} {\left (\log \left (\log \relax (3) + 2 \, \log \relax (2)\right )^{4} + 20 \, \log \left (\log \relax (3) + 2 \, \log \relax (2)\right )^{3} + 156 \, \log \left (\log \relax (3) + 2 \, \log \relax (2)\right )^{2} + 560 \, \log \left (\log \relax (3) + 2 \, \log \relax (2)\right ) + 784\right )} x \log \relax (2) + {\left (\log \left (\log \relax (3) + 2 \, \log \relax (2)\right )^{4} + 20 \, \log \left (\log \relax (3) + 2 \, \log \relax (2)\right )^{3} + 156 \, \log \left (\log \relax (3) + 2 \, \log \relax (2)\right )^{2} + 560 \, \log \left (\log \relax (3) + 2 \, \log \relax (2)\right ) + 784\right )} x \log \left (e^{x} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 24, normalized size = 1.14 \begin {gather*} x\,\left (\ln \relax (2)+\ln \left ({\mathrm {e}}^x+2\right )\right )\,{\left (10\,\ln \left (\ln \left (12\right )\right )+{\ln \left (\ln \left (12\right )\right )}^2+28\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 48, normalized size = 2.29 \begin {gather*} \left (x \log {\left (\log {\left (12 \right )} \right )}^{4} + 20 x \log {\left (\log {\left (12 \right )} \right )}^{3} + 156 x \log {\left (\log {\left (12 \right )} \right )}^{2} + 560 x \log {\left (\log {\left (12 \right )} \right )} + 784 x\right ) \log {\left (2 e^{x} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________