Optimal. Leaf size=28 \[ x-(5+x)^2-\log (x)+\frac {e^{2 e^{-1+x}}}{\log (\log (4))} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 14, 2282, 2194} \begin {gather*} -x^2-9 x-\log (x)+\frac {e^{2 e^{x-1}}}{\log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2 e^{-1+2 e^{-1+x}+x} x+\left (-1-9 x-2 x^2\right ) \log (\log (4))}{x} \, dx}{\log (\log (4))}\\ &=\frac {\int \left (2 e^{-1+2 e^{-1+x}+x}-\frac {\left (1+9 x+2 x^2\right ) \log (\log (4))}{x}\right ) \, dx}{\log (\log (4))}\\ &=\frac {2 \int e^{-1+2 e^{-1+x}+x} \, dx}{\log (\log (4))}-\int \frac {1+9 x+2 x^2}{x} \, dx\\ &=\frac {2 \operatorname {Subst}\left (\int e^{-1+\frac {2 x}{e}} \, dx,x,e^x\right )}{\log (\log (4))}-\int \left (9+\frac {1}{x}+2 x\right ) \, dx\\ &=-9 x-x^2-\log (x)+\frac {e^{2 e^{-1+x}}}{\log (\log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 28, normalized size = 1.00 \begin {gather*} -9 x-x^2-\log (x)+\frac {e^{2 e^{-1+x}}}{\log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 54, normalized size = 1.93 \begin {gather*} -\frac {{\left ({\left ({\left (x^{2} + 9 \, x\right )} e^{\left (x - 1\right )} + e^{\left (x - 1\right )} \log \relax (x)\right )} \log \left (2 \, \log \relax (2)\right ) - e^{\left (x + 2 \, e^{\left (x - 1\right )} - 1\right )}\right )} e^{\left (-x + 1\right )}}{\log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 72, normalized size = 2.57 \begin {gather*} -\frac {{\left (x^{2} e^{x} \log \relax (2) + x^{2} e^{x} \log \left (\log \relax (2)\right ) + 9 \, x e^{x} \log \relax (2) + e^{x} \log \relax (2) \log \relax (x) + 9 \, x e^{x} \log \left (\log \relax (2)\right ) + e^{x} \log \relax (x) \log \left (\log \relax (2)\right ) - e^{\left (x + 2 \, e^{\left (x - 1\right )}\right )}\right )} e^{\left (-x\right )}}{\log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 30, normalized size = 1.07
method | result | size |
norman | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{x -1}}}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-9 x -x^{2}-\ln \relax (x )\) | \(30\) |
default | \(\frac {-\ln \relax (x ) \ln \left (\ln \relax (2)\right )-x^{2} \ln \relax (2)-x^{2} \ln \left (\ln \relax (2)\right )-\ln \relax (2) \ln \relax (x )+{\mathrm e}^{2 \,{\mathrm e}^{x -1}}-9 x \ln \relax (2)-9 x \ln \left (\ln \relax (2)\right )}{\ln \left (2 \ln \relax (2)\right )}\) | \(57\) |
risch | \(-\frac {x^{2} \ln \relax (2)}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-\frac {x^{2} \ln \left (\ln \relax (2)\right )}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-\frac {9 x \ln \relax (2)}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-\frac {9 x \ln \left (\ln \relax (2)\right )}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-\frac {\ln \relax (x ) \ln \relax (2)}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-\frac {\ln \relax (x ) \ln \left (\ln \relax (2)\right )}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}+\frac {{\mathrm e}^{2 \,{\mathrm e}^{x -1}}}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}\) | \(105\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 44, normalized size = 1.57 \begin {gather*} -\frac {x^{2} \log \left (2 \, \log \relax (2)\right ) + 9 \, x \log \left (2 \, \log \relax (2)\right ) + \log \relax (x) \log \left (2 \, \log \relax (2)\right ) - e^{\left (2 \, e^{\left (x - 1\right )}\right )}}{\log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.46, size = 28, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^x}}{\ln \left (2\,\ln \relax (2)\right )}-\ln \relax (x)-x^2-9\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 26, normalized size = 0.93 \begin {gather*} - x^{2} - 9 x + \frac {e^{2 e^{x - 1}}}{\log {\left (\log {\relax (2 )} \right )} + \log {\relax (2 )}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________