Optimal. Leaf size=25 \[ -e^{4 \left (16+2 \left (\frac {16}{e^6}-x+\log (4+x)\right )\right )}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.74, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 22, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {6688, 6742, 2196, 2176, 2194} \begin {gather*} x-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (x+4)^8 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+x+8 e^{64+\frac {128}{e^6}-8 x} (3+x) (4+x)^8}{4+x} \, dx\\ &=\int \left (1+8 e^{64+\frac {128}{e^6}-8 x} (3+x) (4+x)^7\right ) \, dx\\ &=x+8 \int e^{64+\frac {128}{e^6}-8 x} (3+x) (4+x)^7 \, dx\\ &=x+8 \int \left (-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^7+e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8\right ) \, dx\\ &=x-8 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^7 \, dx+8 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8 \, dx\\ &=x+e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^7-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8-7 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^6 \, dx+8 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^7 \, dx\\ &=x+\frac {7}{8} e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^6-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8-\frac {21}{4} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^5 \, dx+7 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^6 \, dx\\ &=x+\frac {21}{32} e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^5-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8-\frac {105}{32} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^4 \, dx+\frac {21}{4} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^5 \, dx\\ &=x+\frac {105}{256} e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^4-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8-\frac {105}{64} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^3 \, dx+\frac {105}{32} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^4 \, dx\\ &=x+\frac {105}{512} e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^3-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8-\frac {315}{512} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^2 \, dx+\frac {105}{64} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^3 \, dx\\ &=x+\frac {315 e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^2}{4096}-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8-\frac {315 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x) \, dx}{2048}+\frac {315}{512} \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^2 \, dx\\ &=x+\frac {315 e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)}{16384}-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8-\frac {315 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} \, dx}{16384}+\frac {315 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x) \, dx}{2048}\\ &=\frac {315 e^{64 \left (1+\frac {2}{e^6}\right )-8 x}}{131072}+x-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8+\frac {315 \int e^{64 \left (1+\frac {2}{e^6}\right )-8 x} \, dx}{16384}\\ &=x-e^{64 \left (1+\frac {2}{e^6}\right )-8 x} (4+x)^8\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 33, normalized size = 1.32 \begin {gather*} -e^{-8 x} (4+x) \left (-e^{8 x}+e^{64+\frac {128}{e^6}} (4+x)^7\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 25, normalized size = 1.00 \begin {gather*} x - e^{\left (-8 \, {\left ({\left (x - 8\right )} e^{6} - e^{6} \log \left (x + 4\right ) - 16\right )} e^{\left (-6\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.32, size = 159, normalized size = 6.36 \begin {gather*} -x^{8} e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} - 32 \, x^{7} e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} - 448 \, x^{6} e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} - 3584 \, x^{5} e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} - 17920 \, x^{4} e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} - 57344 \, x^{3} e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} - 114688 \, x^{2} e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} - 131072 \, x e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} + x - 65536 \, e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} - 8 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 33, normalized size = 1.32
method | result | size |
norman | \(x -{\mathrm e}^{\left (8 \,{\mathrm e}^{6} \ln \left (4+x \right )+\left (-8 x +64\right ) {\mathrm e}^{6}+128\right ) {\mathrm e}^{-6}}\) | \(33\) |
risch | \(x +\left (-x^{8}-32 x^{7}-448 x^{6}-3584 x^{5}-17920 x^{4}-57344 x^{3}-114688 x^{2}-131072 x -65536\right ) {\mathrm e}^{-8 x +64+128 \,{\mathrm e}^{-6}}\) | \(54\) |
default | \(\text {Expression too large to display}\) | \(2689\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -1572864 \, e^{\left (64 \, {\left (e^{6} + 2\right )} e^{\left (-6\right )} + 32\right )} E_{1}\left (8 \, x + 32\right ) + x - \frac {{\left (x^{9} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 36 \, x^{8} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 576 \, x^{7} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 5376 \, x^{6} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 32256 \, x^{5} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 129024 \, x^{4} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 344064 \, x^{3} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 589824 \, x^{2} e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 589824 \, x e^{\left (128 \, e^{\left (-6\right )} + 64\right )}\right )} e^{\left (-8 \, x\right )}}{x + 4} + \int \frac {262144 \, {\left (2 \, x e^{\left (128 \, e^{\left (-6\right )} + 64\right )} + 9 \, e^{\left (128 \, e^{\left (-6\right )} + 64\right )}\right )} e^{\left (-8 \, x\right )}}{x^{2} + 8 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 132, normalized size = 5.28 \begin {gather*} x-65536\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-131072\,x\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-114688\,x^2\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-57344\,x^3\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-17920\,x^4\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-3584\,x^5\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-448\,x^6\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-32\,x^7\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64}-x^8\,{\mathrm {e}}^{128\,{\mathrm {e}}^{-6}-8\,x+64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 15.60, size = 590, normalized size = 23.60 \begin {gather*} x + 819200 \left (- \frac {x e^{- 8 x}}{8} - \frac {e^{- 8 x}}{64}\right ) e^{64} e^{\frac {128}{e^{6}}} + 745472 \left (- \frac {x^{2} e^{- 8 x}}{8} - \frac {x e^{- 8 x}}{32} - \frac {e^{- 8 x}}{256}\right ) e^{64} e^{\frac {128}{e^{6}}} + 387072 \left (- \frac {x^{3} e^{- 8 x}}{8} - \frac {3 x^{2} e^{- 8 x}}{64} - \frac {3 x e^{- 8 x}}{256} - \frac {3 e^{- 8 x}}{2048}\right ) e^{64} e^{\frac {128}{e^{6}}} + 125440 \left (- \frac {x^{4} e^{- 8 x}}{8} - \frac {x^{3} e^{- 8 x}}{16} - \frac {3 x^{2} e^{- 8 x}}{128} - \frac {3 x e^{- 8 x}}{512} - \frac {3 e^{- 8 x}}{4096}\right ) e^{64} e^{\frac {128}{e^{6}}} + 25984 \left (- \frac {x^{5} e^{- 8 x}}{8} - \frac {5 x^{4} e^{- 8 x}}{64} - \frac {5 x^{3} e^{- 8 x}}{128} - \frac {15 x^{2} e^{- 8 x}}{1024} - \frac {15 x e^{- 8 x}}{4096} - \frac {15 e^{- 8 x}}{32768}\right ) e^{64} e^{\frac {128}{e^{6}}} + 3360 \left (- \frac {x^{6} e^{- 8 x}}{8} - \frac {3 x^{5} e^{- 8 x}}{32} - \frac {15 x^{4} e^{- 8 x}}{256} - \frac {15 x^{3} e^{- 8 x}}{512} - \frac {45 x^{2} e^{- 8 x}}{4096} - \frac {45 x e^{- 8 x}}{16384} - \frac {45 e^{- 8 x}}{131072}\right ) e^{64} e^{\frac {128}{e^{6}}} + 248 \left (- \frac {x^{7} e^{- 8 x}}{8} - \frac {7 x^{6} e^{- 8 x}}{64} - \frac {21 x^{5} e^{- 8 x}}{256} - \frac {105 x^{4} e^{- 8 x}}{2048} - \frac {105 x^{3} e^{- 8 x}}{4096} - \frac {315 x^{2} e^{- 8 x}}{32768} - \frac {315 x e^{- 8 x}}{131072} - \frac {315 e^{- 8 x}}{1048576}\right ) e^{64} e^{\frac {128}{e^{6}}} + 8 \left (- \frac {x^{8} e^{- 8 x}}{8} - \frac {x^{7} e^{- 8 x}}{8} - \frac {7 x^{6} e^{- 8 x}}{64} - \frac {21 x^{5} e^{- 8 x}}{256} - \frac {105 x^{4} e^{- 8 x}}{2048} - \frac {105 x^{3} e^{- 8 x}}{4096} - \frac {315 x^{2} e^{- 8 x}}{32768} - \frac {315 x e^{- 8 x}}{131072} - \frac {315 e^{- 8 x}}{1048576}\right ) e^{64} e^{\frac {128}{e^{6}}} - 49152 e^{64} e^{- 8 x} e^{\frac {128}{e^{6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________