Optimal. Leaf size=28 \[ e^x+\frac {x}{5-\frac {4}{x \left (x+\frac {3 x^2}{\log (x)}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 8.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12 x^3+45 x^6+225 e^x x^6+\left (-48 x^3+30 x^5+e^x \left (-120 x^3+150 x^5\right )\right ) \log (x)+\left (-12 x^2+5 x^4+e^x \left (16-40 x^2+25 x^4\right )\right ) \log ^2(x)}{225 x^6+\left (-120 x^3+150 x^5\right ) \log (x)+\left (16-40 x^2+25 x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 x^3+45 x^6+225 e^x x^6+\left (-48 x^3+30 x^5+e^x \left (-120 x^3+150 x^5\right )\right ) \log (x)+\left (-12 x^2+5 x^4+e^x \left (16-40 x^2+25 x^4\right )\right ) \log ^2(x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx\\ &=\int \left (e^x+\frac {12 x^3}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}+\frac {45 x^6}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}-\frac {48 x^3 \log (x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}+\frac {30 x^5 \log (x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}-\frac {12 x^2 \log ^2(x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}+\frac {5 x^4 \log ^2(x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}\right ) \, dx\\ &=5 \int \frac {x^4 \log ^2(x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx+12 \int \frac {x^3}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx-12 \int \frac {x^2 \log ^2(x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx+30 \int \frac {x^5 \log (x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx+45 \int \frac {x^6}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx-48 \int \frac {x^3 \log (x)}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx+\int e^x \, dx\\ &=e^x+5 \int \left (\frac {x^4}{\left (-4+5 x^2\right )^2}+\frac {225 x^{10}}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}-\frac {30 x^7}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )}\right ) \, dx+12 \int \frac {x^3}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx-12 \int \left (\frac {x^2}{\left (-4+5 x^2\right )^2}+\frac {225 x^8}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}-\frac {30 x^5}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )}\right ) \, dx+30 \int \left (-\frac {15 x^8}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}+\frac {x^5}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )}\right ) \, dx+45 \int \frac {x^6}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx-48 \int \left (-\frac {15 x^6}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2}+\frac {x^3}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )}\right ) \, dx\\ &=e^x+5 \int \frac {x^4}{\left (-4+5 x^2\right )^2} \, dx-12 \int \frac {x^2}{\left (-4+5 x^2\right )^2} \, dx+12 \int \frac {x^3}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx+30 \int \frac {x^5}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )} \, dx+45 \int \frac {x^6}{\left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx-48 \int \frac {x^3}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )} \, dx-150 \int \frac {x^7}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )} \, dx+360 \int \frac {x^5}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )} \, dx-450 \int \frac {x^8}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx+720 \int \frac {x^6}{\left (-4+5 x^2\right ) \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx+1125 \int \frac {x^{10}}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx-2700 \int \frac {x^8}{\left (-4+5 x^2\right )^2 \left (15 x^3-4 \log (x)+5 x^2 \log (x)\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 50, normalized size = 1.79 \begin {gather*} \frac {3 x^3 \left (5 e^x+x\right )+\left (x^3+e^x \left (-4+5 x^2\right )\right ) \log (x)}{15 x^3+\left (-4+5 x^2\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 49, normalized size = 1.75 \begin {gather*} \frac {3 \, x^{4} + 15 \, x^{3} e^{x} + {\left (x^{3} + {\left (5 \, x^{2} - 4\right )} e^{x}\right )} \log \relax (x)}{15 \, x^{3} + {\left (5 \, x^{2} - 4\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.58, size = 54, normalized size = 1.93 \begin {gather*} \frac {3 \, x^{4} + 15 \, x^{3} e^{x} + x^{3} \log \relax (x) + 5 \, x^{2} e^{x} \log \relax (x) - 4 \, e^{x} \log \relax (x)}{15 \, x^{3} + 5 \, x^{2} \log \relax (x) - 4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.29
method | result | size |
default | \(\frac {x^{3} \ln \relax (x )+3 x^{4}}{5 x^{2} \ln \relax (x )+15 x^{3}-4 \ln \relax (x )}+{\mathrm e}^{x}\) | \(36\) |
risch | \(\frac {x^{3}+5 \,{\mathrm e}^{x} x^{2}-4 \,{\mathrm e}^{x}}{5 x^{2}-4}-\frac {12 x^{4}}{\left (5 x^{2}-4\right ) \left (5 x^{2} \ln \relax (x )+15 x^{3}-4 \ln \relax (x )\right )}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 50, normalized size = 1.79 \begin {gather*} \frac {3 \, x^{4} + x^{3} \log \relax (x) + {\left (15 \, x^{3} + {\left (5 \, x^{2} - 4\right )} \log \relax (x)\right )} e^{x}}{15 \, x^{3} + {\left (5 \, x^{2} - 4\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.87, size = 99, normalized size = 3.54 \begin {gather*} \frac {x}{5}+{\mathrm {e}}^x+\frac {4\,x}{25\,\left (x^2-\frac {4}{5}\right )}-\frac {12\,\left (75\,x^{10}+25\,x^9-180\,x^8-40\,x^7+16\,x^5\right )}{\left (15\,x^3+\ln \relax (x)\,\left (5\,x^2-4\right )\right )\,\left (5\,x^2-4\right )\,\left (75\,x^6+25\,x^5-180\,x^4-40\,x^3+16\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 46, normalized size = 1.64 \begin {gather*} - \frac {12 x^{4}}{75 x^{5} - 60 x^{3} + \left (25 x^{4} - 40 x^{2} + 16\right ) \log {\relax (x )}} + \frac {x}{5} + \frac {4 x}{25 x^{2} - 20} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________