Optimal. Leaf size=35 \[ \frac {-3+\frac {5}{x}-\frac {-x+\log \left (\frac {\log (x)}{1-x}\right )}{e^4}}{-2+e^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 66, normalized size of antiderivative = 1.89, number of steps used = 8, number of rules used = 6, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {12, 6741, 6742, 1620, 2302, 29} \begin {gather*} -\frac {x}{e^4 \left (2-e^2\right )}-\frac {5}{\left (2-e^2\right ) x}-\frac {\log (1-x)}{e^4 \left (2-e^2\right )}+\frac {\log (\log (x))}{e^4 \left (2-e^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 1620
Rule 2302
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {x-x^2+\left (e^4 (5-5 x)+x^3\right ) \log (x)}{\left (2 x^2-2 x^3+e^2 \left (-x^2+x^3\right )\right ) \log (x)} \, dx}{e^4}\\ &=\frac {\int \frac {x-x^2+\left (e^4 (5-5 x)+x^3\right ) \log (x)}{x^2 \left (2-e^2+\left (-2+e^2\right ) x\right ) \log (x)} \, dx}{e^4}\\ &=\frac {\int \left (\frac {5 e^4-5 e^4 x+x^3}{\left (-2+e^2\right ) (-1+x) x^2}+\frac {1}{\left (2-e^2\right ) x \log (x)}\right ) \, dx}{e^4}\\ &=-\frac {\int \frac {5 e^4-5 e^4 x+x^3}{(-1+x) x^2} \, dx}{e^4 \left (2-e^2\right )}+\frac {\int \frac {1}{x \log (x)} \, dx}{e^4 \left (2-e^2\right )}\\ &=-\frac {\int \left (1+\frac {1}{-1+x}-\frac {5 e^4}{x^2}\right ) \, dx}{e^4 \left (2-e^2\right )}+\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )}{e^4 \left (2-e^2\right )}\\ &=-\frac {5}{\left (2-e^2\right ) x}-\frac {x}{e^4 \left (2-e^2\right )}-\frac {\log (1-x)}{e^4 \left (2-e^2\right )}+\frac {\log (\log (x))}{e^4 \left (2-e^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 32, normalized size = 0.91 \begin {gather*} \frac {\frac {5 e^4}{x}+x+\log (1-x)-\log (\log (x))}{e^4 \left (-2+e^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 33, normalized size = 0.94 \begin {gather*} \frac {x^{2} + x \log \left (x - 1\right ) - x \log \left (\log \relax (x)\right ) + 5 \, e^{4}}{x e^{6} - 2 \, x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 33, normalized size = 0.94 \begin {gather*} \frac {{\left (x^{2} + x \log \left (x - 1\right ) - x \log \left (\log \relax (x)\right ) + 5 \, e^{4}\right )} e^{\left (-4\right )}}{x e^{2} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 41, normalized size = 1.17
method | result | size |
risch | \(\frac {{\mathrm e}^{-4} \left (\ln \left (x -1\right ) x +5 \,{\mathrm e}^{4}+x^{2}\right )}{\left ({\mathrm e}^{2}-2\right ) x}-\frac {{\mathrm e}^{-4} \ln \left (\ln \relax (x )\right )}{{\mathrm e}^{2}-2}\) | \(41\) |
default | \({\mathrm e}^{-4} \left (-\frac {\ln \left (\ln \relax (x )\right )}{{\mathrm e}^{2}-2}+\frac {x}{{\mathrm e}^{2}-2}+\frac {\ln \left (x -1\right )}{{\mathrm e}^{2}-2}+\frac {5 \,{\mathrm e}^{4}}{\left ({\mathrm e}^{2}-2\right ) x}\right )\) | \(50\) |
norman | \(\frac {\frac {{\mathrm e}^{-4} x^{2}}{{\mathrm e}^{2}-2}+\frac {5}{{\mathrm e}^{2}-2}}{x}+\frac {{\mathrm e}^{-4} \ln \left (x -1\right )}{{\mathrm e}^{2}-2}-\frac {{\mathrm e}^{-4} \ln \left (\ln \relax (x )\right )}{{\mathrm e}^{2}-2}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 44, normalized size = 1.26 \begin {gather*} {\left (\frac {\log \left (x - 1\right )}{e^{2} - 2} - \frac {\log \left (\log \relax (x)\right )}{e^{2} - 2} + \frac {x^{2} + 5 \, e^{4}}{x {\left (e^{2} - 2\right )}}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.88, size = 41, normalized size = 1.17 \begin {gather*} \frac {5}{x\,\left ({\mathrm {e}}^2-2\right )}+\frac {{\mathrm {e}}^{-4}\,\left (\ln \left (x-1\right )-\ln \left (\ln \relax (x)\right )\right )}{{\mathrm {e}}^2-2}+\frac {x\,{\mathrm {e}}^{-4}}{{\mathrm {e}}^2-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.63, size = 44, normalized size = 1.26 \begin {gather*} \frac {x}{- 2 e^{4} + e^{6}} + \frac {\log {\left (x - 1 \right )}}{\left (-2 + e^{2}\right ) e^{4}} - \frac {\log {\left (\log {\relax (x )} \right )}}{\left (-2 + e^{2}\right ) e^{4}} + \frac {5}{x \left (-2 + e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________