Optimal. Leaf size=27 \[ e^{-2+4 \left (x+\frac {2 x}{e^2}+\frac {x}{e}-\frac {2 \log (\log (x))}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-3+\frac {8 e x^2+e^2 \left (4 x^2+e \left (-2 x+4 x^2\right )\right )-8 e^3 \log (\log (x))}{e^3 x}\right ) \left (-8 e^3+\left (8 e x^2+e^2 \left (4 x^2+4 e x^2\right )\right ) \log (x)+8 e^3 \log (x) \log (\log (x))\right )}{x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-1-\frac {8}{x}}(x) \left (-8 e^2+4 \log (x) \left (\left (2+e+e^2\right ) x^2+2 e^2 \log (\log (x))\right )\right )}{x^2} \, dx\\ &=\int \left (\frac {4 e^{-4+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-1-\frac {8}{x}}(x) \left (-2 e^2+2 \left (1+\frac {1}{2} e (1+e)\right ) x^2 \log (x)\right )}{x^2}+\frac {8 e^{-2+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-\frac {8}{x}}(x) \log (\log (x))}{x^2}\right ) \, dx\\ &=4 \int \frac {e^{-4+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-1-\frac {8}{x}}(x) \left (-2 e^2+2 \left (1+\frac {1}{2} e (1+e)\right ) x^2 \log (x)\right )}{x^2} \, dx+8 \int \frac {e^{-2+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-\frac {8}{x}}(x) \log (\log (x))}{x^2} \, dx\\ &=4 \int \left (-\frac {2 e^{-2+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-1-\frac {8}{x}}(x)}{x^2}+e^{-4+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \left (2+e+e^2\right ) \log ^{-\frac {8}{x}}(x)\right ) \, dx+8 \int \frac {e^{-2+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-\frac {8}{x}}(x) \log (\log (x))}{x^2} \, dx\\ &=-\left (8 \int \frac {e^{-2+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-1-\frac {8}{x}}(x)}{x^2} \, dx\right )+8 \int \frac {e^{-2+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-\frac {8}{x}}(x) \log (\log (x))}{x^2} \, dx+\left (4 \left (2+e+e^2\right )\right ) \int e^{-4+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-\frac {8}{x}}(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 25, normalized size = 0.93 \begin {gather*} e^{-2+\frac {4 \left (2+e+e^2\right ) x}{e^2}} \log ^{-\frac {8}{x}}(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 41, normalized size = 1.52 \begin {gather*} e^{\left (\frac {{\left (4 \, x^{2} e + 8 \, x^{2} + {\left (4 \, x^{2} - 5 \, x\right )} e^{2} - 8 \, e^{2} \log \left (\log \relax (x)\right )\right )} e^{\left (-2\right )}}{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.58, size = 24, normalized size = 0.89 \begin {gather*} e^{\left (4 \, x e^{\left (-1\right )} + 8 \, x e^{\left (-2\right )} + 4 \, x - \frac {8 \, \log \left (\log \relax (x)\right )}{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 43, normalized size = 1.59
method | result | size |
risch | \({\mathrm e}^{\frac {2 \left (2 x^{2} {\mathrm e}^{3}-x \,{\mathrm e}^{3}+2 x^{2} {\mathrm e}^{2}+4 x^{2} {\mathrm e}-4 \ln \left (\ln \relax (x )\right ) {\mathrm e}^{3}\right ) {\mathrm e}^{-3}}{x}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 24, normalized size = 0.89 \begin {gather*} e^{\left (4 \, x e^{\left (-1\right )} + 8 \, x e^{\left (-2\right )} + 4 \, x - \frac {8 \, \log \left (\log \relax (x)\right )}{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.13, size = 29, normalized size = 1.07 \begin {gather*} \frac {{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{-1}}\,{\mathrm {e}}^{8\,x\,{\mathrm {e}}^{-2}}}{{\ln \relax (x)}^{8/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 44, normalized size = 1.63 \begin {gather*} e^{\frac {8 e x^{2} + \left (4 x^{2} + e \left (4 x^{2} - 2 x\right )\right ) e^{2} - 8 e^{3} \log {\left (\log {\relax (x )} \right )}}{x e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________