Optimal. Leaf size=23 \[ \frac {1}{8} e^{4-e^{1+\log (5) (-3+2 \log (x))}} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 3, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 2274, 6706} \begin {gather*} \frac {\log (5) e^{4-e 5^{2 \log (x)-3}}}{4 \log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\frac {1}{500} \log (5) \int \frac {\exp \left (5-\frac {1}{125} e^{1+2 \log (5) \log (x)}+2 \log (5) \log (x)\right )}{x} \, dx\right )\\ &=-\left (\frac {1}{500} \log (5) \int e^{5-\frac {1}{125} e^{1+2 \log (5) \log (x)}} x^{-1+2 \log (5)} \, dx\right )\\ &=\frac {e^{4-5^{-3+2 \log (x)} e} \log (5)}{4 \log (25)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 0.83 \begin {gather*} \frac {1}{8} e^{4-5^{-3+2 \log (x)} e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.26, size = 22, normalized size = 0.96 \begin {gather*} e^{\left (-e^{\left (2 \, \log \relax (5) \log \relax (x) - 3 \, \log \relax (5) + 1\right )} - 3 \, \log \relax (2) + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 24, normalized size = 1.04 \begin {gather*} \frac {1}{1000} \, e^{\left (-e^{\left (2 \, \log \relax (5) \log \relax (x) - 3 \, \log \relax (5) + 1\right )} + 3 \, \log \relax (5) + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 16, normalized size = 0.70
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {x^{2 \ln \relax (5)} {\mathrm e}}{125}+4}}{8}\) | \(16\) |
derivativedivides | \({\mathrm e}^{-{\mathrm e}^{2 \ln \relax (5) \ln \relax (x )-3 \ln \relax (5)+1}-3 \ln \relax (2)+4}\) | \(23\) |
default | \({\mathrm e}^{-{\mathrm e}^{2 \ln \relax (5) \ln \relax (x )-3 \ln \relax (5)+1}-3 \ln \relax (2)+4}\) | \(23\) |
norman | \({\mathrm e}^{-{\mathrm e}^{2 \ln \relax (5) \ln \relax (x )-3 \ln \relax (5)+1}-3 \ln \relax (2)+4}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 16, normalized size = 0.70 \begin {gather*} \frac {1}{8} \, e^{\left (-\frac {1}{125} \, e^{\left (2 \, \log \relax (5) \log \relax (x) + 1\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.30, size = 15, normalized size = 0.65 \begin {gather*} \frac {{\mathrm {e}}^4\,{\mathrm {e}}^{-\frac {x^{2\,\ln \relax (5)}\,\mathrm {e}}{125}}}{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.60, size = 20, normalized size = 0.87 \begin {gather*} \frac {e^{4} e^{- \frac {e e^{2 \log {\relax (5 )} \log {\relax (x )}}}{125}}}{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________