Optimal. Leaf size=28 \[ \frac {e^{2 e^{-x}}}{\log ^2\left (\frac {15}{\frac {x}{4}+e^2 x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 e^{-x}-x} \left (2 e^x-2 x \log \left (\frac {60}{x+4 e^2 x}\right )\right )}{x \log ^3\left (\frac {60}{x+4 e^2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 e^{-x}-x} \left (2 e^x-2 x \log \left (\frac {60}{x+4 e^2 x}\right )\right )}{x \log ^3\left (\frac {60}{\left (1+4 e^2\right ) x}\right )} \, dx\\ &=\int \frac {2 e^{2 e^{-x}-x} \left (e^x-x \log \left (\frac {60}{x+4 e^2 x}\right )\right )}{x \log ^3\left (\frac {60}{\left (1+4 e^2\right ) x}\right )} \, dx\\ &=2 \int \frac {e^{2 e^{-x}-x} \left (e^x-x \log \left (\frac {60}{x+4 e^2 x}\right )\right )}{x \log ^3\left (\frac {60}{\left (1+4 e^2\right ) x}\right )} \, dx\\ &=2 \int \left (\frac {e^{2 e^{-x}}}{x \log ^3\left (\frac {60}{\left (1+4 e^2\right ) x}\right )}-\frac {e^{2 e^{-x}-x}}{\log ^2\left (\frac {60}{\left (1+4 e^2\right ) x}\right )}\right ) \, dx\\ &=2 \int \frac {e^{2 e^{-x}}}{x \log ^3\left (\frac {60}{\left (1+4 e^2\right ) x}\right )} \, dx-2 \int \frac {e^{2 e^{-x}-x}}{\log ^2\left (\frac {60}{\left (1+4 e^2\right ) x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.85, size = 25, normalized size = 0.89 \begin {gather*} \frac {e^{2 e^{-x}}}{\log ^2\left (\frac {60}{x+4 e^2 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 30, normalized size = 1.07 \begin {gather*} \frac {e^{\left (-{\left (x e^{x} - 2\right )} e^{\left (-x\right )} + x\right )}}{\log \left (\frac {60}{4 \, x e^{2} + x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (x \log \left (\frac {60}{4 \, x e^{2} + x}\right ) - e^{x}\right )} e^{\left (-x + 2 \, e^{\left (-x\right )}\right )}}{x \log \left (\frac {60}{4 \, x e^{2} + x}\right )^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 15.04, size = 43, normalized size = 1.54
method | result | size |
risch | \(-\frac {4 \,{\mathrm e}^{2 \,{\mathrm e}^{-x}}}{\left (2 i \ln \relax (5)+2 i \ln \relax (3)+4 i \ln \relax (2)-2 i \ln \left (4 \,{\mathrm e}^{2}+1\right )-2 i \ln \relax (x )\right )^{2}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {{\left (x \log \left (\frac {60}{4 \, x e^{2} + x}\right ) - e^{x}\right )} e^{\left (-x + 2 \, e^{\left (-x\right )}\right )}}{x \log \left (\frac {60}{4 \, x e^{2} + x}\right )^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.63, size = 22, normalized size = 0.79 \begin {gather*} \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^{-x}}}{{\ln \left (\frac {60}{x+4\,x\,{\mathrm {e}}^2}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 19, normalized size = 0.68 \begin {gather*} \frac {e^{2 e^{- x}}}{\log {\left (\frac {60}{x + 4 x e^{2}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________