Optimal. Leaf size=30 \[ \frac {2 e^6 (3+x)^2}{e^x+\frac {1}{15} (x-\log (5-x))} \]
________________________________________________________________________________________
Rubi [F] time = 5.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{6+x} \left (6750+7650 x+450 x^2-450 x^3\right )+e^6 \left (1620-90 x-120 x^2+30 x^3\right )+e^6 \left (900+120 x-60 x^2\right ) \log (5-x)}{-5 x^2+x^3+e^{2 x} (-1125+225 x)+e^x \left (-150 x+30 x^2\right )+\left (e^x (150-30 x)+10 x-2 x^2\right ) \log (5-x)+(-5+x) \log ^2(5-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {30 e^6 (3+x) \left (-18+7 x-x^2+15 e^x \left (-5-4 x+x^2\right )+2 (-5+x) \log (5-x)\right )}{(5-x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx\\ &=\left (30 e^6\right ) \int \frac {(3+x) \left (-18+7 x-x^2+15 e^x \left (-5-4 x+x^2\right )+2 (-5+x) \log (5-x)\right )}{(5-x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx\\ &=\left (30 e^6\right ) \int \left (-\frac {3+4 x+x^2}{15 e^x+x-\log (5-x)}+\frac {(3+x)^2 \left (6-6 x+x^2+5 \log (5-x)-x \log (5-x)\right )}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx\\ &=-\left (\left (30 e^6\right ) \int \frac {3+4 x+x^2}{15 e^x+x-\log (5-x)} \, dx\right )+\left (30 e^6\right ) \int \frac {(3+x)^2 \left (6-6 x+x^2+5 \log (5-x)-x \log (5-x)\right )}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx\\ &=-\left (\left (30 e^6\right ) \int \left (\frac {3}{15 e^x+x-\log (5-x)}+\frac {4 x}{15 e^x+x-\log (5-x)}+\frac {x^2}{15 e^x+x-\log (5-x)}\right ) \, dx\right )+\left (30 e^6\right ) \int \left (\frac {11 \left (6-6 x+x^2+5 \log (5-x)-x \log (5-x)\right )}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {64 \left (6-6 x+x^2+5 \log (5-x)-x \log (5-x)\right )}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}+\frac {x \left (6-6 x+x^2+5 \log (5-x)-x \log (5-x)\right )}{\left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx\\ &=-\left (\left (30 e^6\right ) \int \frac {x^2}{15 e^x+x-\log (5-x)} \, dx\right )+\left (30 e^6\right ) \int \frac {x \left (6-6 x+x^2+5 \log (5-x)-x \log (5-x)\right )}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (90 e^6\right ) \int \frac {1}{15 e^x+x-\log (5-x)} \, dx-\left (120 e^6\right ) \int \frac {x}{15 e^x+x-\log (5-x)} \, dx+\left (330 e^6\right ) \int \frac {6-6 x+x^2+5 \log (5-x)-x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1920 e^6\right ) \int \frac {6-6 x+x^2+5 \log (5-x)-x \log (5-x)}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx\\ &=-\left (\left (30 e^6\right ) \int \frac {x^2}{15 e^x+x-\log (5-x)} \, dx\right )+\left (30 e^6\right ) \int \left (\frac {6 x}{\left (15 e^x+x-\log (5-x)\right )^2}-\frac {6 x^2}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {x^3}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {5 x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2}-\frac {x^2 \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx-\left (90 e^6\right ) \int \frac {1}{15 e^x+x-\log (5-x)} \, dx-\left (120 e^6\right ) \int \frac {x}{15 e^x+x-\log (5-x)} \, dx+\left (330 e^6\right ) \int \left (\frac {6}{\left (15 e^x+x-\log (5-x)\right )^2}-\frac {6 x}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {x^2}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {5 \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2}-\frac {x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx+\left (1920 e^6\right ) \int \left (\frac {6}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}-\frac {6 x}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}+\frac {x^2}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}+\frac {5 \log (5-x)}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}-\frac {x \log (5-x)}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx\\ &=\left (30 e^6\right ) \int \frac {x^3}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (30 e^6\right ) \int \frac {x^2}{15 e^x+x-\log (5-x)} \, dx-\left (30 e^6\right ) \int \frac {x^2 \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (90 e^6\right ) \int \frac {1}{15 e^x+x-\log (5-x)} \, dx-\left (120 e^6\right ) \int \frac {x}{15 e^x+x-\log (5-x)} \, dx+\left (150 e^6\right ) \int \frac {x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (180 e^6\right ) \int \frac {x}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (180 e^6\right ) \int \frac {x^2}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (330 e^6\right ) \int \frac {x^2}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (330 e^6\right ) \int \frac {x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1650 e^6\right ) \int \frac {\log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1920 e^6\right ) \int \frac {x^2}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (1920 e^6\right ) \int \frac {x \log (5-x)}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1980 e^6\right ) \int \frac {1}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (1980 e^6\right ) \int \frac {x}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (9600 e^6\right ) \int \frac {\log (5-x)}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (11520 e^6\right ) \int \frac {1}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (11520 e^6\right ) \int \frac {x}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx\\ &=\left (30 e^6\right ) \int \frac {x^3}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (30 e^6\right ) \int \frac {x^2}{15 e^x+x-\log (5-x)} \, dx-\left (30 e^6\right ) \int \frac {x^2 \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (90 e^6\right ) \int \frac {1}{15 e^x+x-\log (5-x)} \, dx-\left (120 e^6\right ) \int \frac {x}{15 e^x+x-\log (5-x)} \, dx+\left (150 e^6\right ) \int \frac {x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (180 e^6\right ) \int \frac {x}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (180 e^6\right ) \int \frac {x^2}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (330 e^6\right ) \int \frac {x^2}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (330 e^6\right ) \int \frac {x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1650 e^6\right ) \int \frac {\log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1920 e^6\right ) \int \left (\frac {5}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {25}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}+\frac {x}{\left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx-\left (1920 e^6\right ) \int \left (\frac {\log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {5 \log (5-x)}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx+\left (1980 e^6\right ) \int \frac {1}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (1980 e^6\right ) \int \frac {x}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (9600 e^6\right ) \int \frac {\log (5-x)}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (11520 e^6\right ) \int \left (\frac {1}{\left (15 e^x+x-\log (5-x)\right )^2}+\frac {5}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2}\right ) \, dx+\left (11520 e^6\right ) \int \frac {1}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx\\ &=\left (30 e^6\right ) \int \frac {x^3}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (30 e^6\right ) \int \frac {x^2}{15 e^x+x-\log (5-x)} \, dx-\left (30 e^6\right ) \int \frac {x^2 \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (90 e^6\right ) \int \frac {1}{15 e^x+x-\log (5-x)} \, dx-\left (120 e^6\right ) \int \frac {x}{15 e^x+x-\log (5-x)} \, dx+\left (150 e^6\right ) \int \frac {x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (180 e^6\right ) \int \frac {x}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (180 e^6\right ) \int \frac {x^2}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (330 e^6\right ) \int \frac {x^2}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (330 e^6\right ) \int \frac {x \log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1650 e^6\right ) \int \frac {\log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1920 e^6\right ) \int \frac {x}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (1920 e^6\right ) \int \frac {\log (5-x)}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (1980 e^6\right ) \int \frac {1}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (1980 e^6\right ) \int \frac {x}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (9600 e^6\right ) \int \frac {1}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (11520 e^6\right ) \int \frac {1}{\left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (11520 e^6\right ) \int \frac {1}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx+\left (48000 e^6\right ) \int \frac {1}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx-\left (57600 e^6\right ) \int \frac {1}{(-5+x) \left (15 e^x+x-\log (5-x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.90, size = 27, normalized size = 0.90 \begin {gather*} -\frac {30 e^6 (3+x)^2}{-15 e^x-x+\log (5-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 35, normalized size = 1.17 \begin {gather*} \frac {30 \, {\left (x^{2} + 6 \, x + 9\right )} e^{12}}{x e^{6} - e^{6} \log \left (-x + 5\right ) + 15 \, e^{\left (x + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 34, normalized size = 1.13 \begin {gather*} \frac {30 \, {\left (x^{2} e^{6} + 6 \, x e^{6} + 9 \, e^{6}\right )}}{x + 15 \, e^{x} - \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 0.97
method | result | size |
risch | \(\frac {30 \left (x^{2}+6 x +9\right ) {\mathrm e}^{6}}{15 \,{\mathrm e}^{x}-\ln \left (5-x \right )+x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 34, normalized size = 1.13 \begin {gather*} \frac {30 \, {\left (x^{2} e^{6} + 6 \, x e^{6} + 9 \, e^{6}\right )}}{x + 15 \, e^{x} - \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^6\,{\mathrm {e}}^x\,\left (-450\,x^3+450\,x^2+7650\,x+6750\right )-{\mathrm {e}}^6\,\left (-30\,x^3+120\,x^2+90\,x-1620\right )+{\mathrm {e}}^6\,\ln \left (5-x\right )\,\left (-60\,x^2+120\,x+900\right )}{{\ln \left (5-x\right )}^2\,\left (x-5\right )-{\mathrm {e}}^x\,\left (150\,x-30\,x^2\right )+{\mathrm {e}}^{2\,x}\,\left (225\,x-1125\right )-5\,x^2+x^3-\ln \left (5-x\right )\,\left ({\mathrm {e}}^x\,\left (30\,x-150\right )-10\,x+2\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 32, normalized size = 1.07 \begin {gather*} \frac {2 x^{2} e^{6} + 12 x e^{6} + 18 e^{6}}{\frac {x}{15} + e^{x} - \frac {\log {\left (5 - x \right )}}{15}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________