Optimal. Leaf size=28 \[ -3 e^5+x \left (3+x^3 \left (-x+\log \left (\frac {4}{x \log (x)}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.21, antiderivative size = 49, normalized size of antiderivative = 1.75, number of steps used = 11, number of rules used = 9, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.209, Rules used = {6742, 6688, 2309, 2178, 30, 2555, 12, 2366, 6482} \begin {gather*} -\text {Ei}(4 \log (x))-\log (x) \text {Ei}(4 \log (x))+(\log (x)+1) \text {Ei}(4 \log (x))-x^5+x^4 \log \left (\frac {4}{x \log (x)}\right )+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2309
Rule 2366
Rule 2555
Rule 6482
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-x^3+3 \log (x)-x^3 \log (x)-5 x^4 \log (x)}{\log (x)}+4 x^3 \log \left (\frac {4}{x \log (x)}\right )\right ) \, dx\\ &=4 \int x^3 \log \left (\frac {4}{x \log (x)}\right ) \, dx+\int \frac {-x^3+3 \log (x)-x^3 \log (x)-5 x^4 \log (x)}{\log (x)} \, dx\\ &=x^4 \log \left (\frac {4}{x \log (x)}\right )-4 \int -\frac {x^3 (1+\log (x))}{4 \log (x)} \, dx+\int \left (3-x^3-5 x^4-\frac {x^3}{\log (x)}\right ) \, dx\\ &=3 x-\frac {x^4}{4}-x^5+x^4 \log \left (\frac {4}{x \log (x)}\right )-\int \frac {x^3}{\log (x)} \, dx+\int \frac {x^3 (1+\log (x))}{\log (x)} \, dx\\ &=3 x-\frac {x^4}{4}-x^5+\text {Ei}(4 \log (x)) (1+\log (x))+x^4 \log \left (\frac {4}{x \log (x)}\right )-\int \frac {\text {Ei}(4 \log (x))}{x} \, dx-\operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )\\ &=3 x-\frac {x^4}{4}-x^5-\text {Ei}(4 \log (x))+\text {Ei}(4 \log (x)) (1+\log (x))+x^4 \log \left (\frac {4}{x \log (x)}\right )-\operatorname {Subst}(\int \text {Ei}(4 x) \, dx,x,\log (x))\\ &=3 x-x^5-\text {Ei}(4 \log (x))-\text {Ei}(4 \log (x)) \log (x)+\text {Ei}(4 \log (x)) (1+\log (x))+x^4 \log \left (\frac {4}{x \log (x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 0.82 \begin {gather*} 3 x-x^5+x^4 \log \left (\frac {4}{x \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 23, normalized size = 0.82 \begin {gather*} -x^{5} + x^{4} \log \left (\frac {4}{x \log \relax (x)}\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 31, normalized size = 1.11 \begin {gather*} -x^{5} + 2 \, x^{4} \log \relax (2) - x^{4} \log \relax (x) - x^{4} \log \left (\log \relax (x)\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.10, size = 140, normalized size = 5.00
method | result | size |
risch | \(-x^{4} \ln \left (\ln \relax (x )\right )-x^{4} \ln \relax (x )+\frac {i \pi \,x^{4} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \relax (x )}\right )^{2}}{2}-\frac {i \pi \,x^{4} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )}{2}+\frac {i \pi \,x^{4} \mathrm {csgn}\left (\frac {i}{x \ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )}{2}-\frac {i \pi \,x^{4} \mathrm {csgn}\left (\frac {i}{x \ln \relax (x )}\right )^{3}}{2}+2 x^{4} \ln \relax (2)-x^{5}+3 x\) | \(140\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -x^{5} + \frac {1}{4} \, x^{4} {\left (8 \, \log \relax (2) + 1\right )} - x^{4} \log \relax (x) - x^{4} \log \left (\log \relax (x)\right ) - \frac {1}{4} \, x^{4} + 3 \, x - {\rm Ei}\left (4 \, \log \relax (x)\right ) + \int \frac {x^{3}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.97, size = 23, normalized size = 0.82 \begin {gather*} 3\,x+x^4\,\ln \left (\frac {4}{x\,\ln \relax (x)}\right )-x^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 17, normalized size = 0.61 \begin {gather*} - x^{5} + x^{4} \log {\left (\frac {4}{x \log {\relax (x )}} \right )} + 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________