Optimal. Leaf size=22 \[ \frac {\log \left (\log ^2\left (x \left (-16+\left (e^2-x\right )^2+x\right )\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32+2 e^4+4 x-8 e^2 x+6 x^2+\left (16-e^4-x+2 e^2 x-x^2\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right ) \log \left (\log ^2\left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )\right )}{\left (-16 x^2+e^4 x^2+x^3-2 e^2 x^3+x^4\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32+2 e^4+4 x-8 e^2 x+6 x^2+\left (16-e^4-x+2 e^2 x-x^2\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right ) \log \left (\log ^2\left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )\right )}{\left (\left (-16+e^4\right ) x^2+x^3-2 e^2 x^3+x^4\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )} \, dx\\ &=\int \frac {-32+2 e^4+4 x-8 e^2 x+6 x^2+\left (16-e^4-x+2 e^2 x-x^2\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right ) \log \left (\log ^2\left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )\right )}{\left (\left (-16+e^4\right ) x^2+\left (1-2 e^2\right ) x^3+x^4\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )} \, dx\\ &=\int \frac {-32+2 e^4+\left (4-8 e^2\right ) x+6 x^2+\left (16-e^4-x+2 e^2 x-x^2\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right ) \log \left (\log ^2\left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )\right )}{\left (\left (-16+e^4\right ) x^2+\left (1-2 e^2\right ) x^3+x^4\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )} \, dx\\ &=\int \frac {-32+2 e^4+\left (4-8 e^2\right ) x+6 x^2+\left (16-e^4-x+2 e^2 x-x^2\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right ) \log \left (\log ^2\left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )\right )}{x^2 \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right ) \log \left (-16 x+e^4 x+x^2-2 e^2 x^2+x^3\right )} \, dx\\ &=\int \left (\frac {2 \left (16-e^4-2 \left (1-2 e^2\right ) x-3 x^2\right )}{x^2 \left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}-\frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {16-e^4-2 \left (1-2 e^2\right ) x-3 x^2}{x^2 \left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx-\int \frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2} \, dx\\ &=2 \int \left (\frac {1}{x^2 \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}+\frac {-1+2 e^2}{(2-e) (2+e) \left (4+e^2\right ) x \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}+\frac {-33+4 e^2-2 e^4-\left (1-2 e^2\right ) x}{(2-e) (2+e) \left (4+e^2\right ) \left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}\right ) \, dx-\int \frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2} \, dx\\ &=2 \int \frac {1}{x^2 \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx+\frac {2 \int \frac {-33+4 e^2-2 e^4-\left (1-2 e^2\right ) x}{\left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\frac {\left (2 \left (1-2 e^2\right )\right ) \int \frac {1}{x \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\int \frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2} \, dx\\ &=2 \int \frac {1}{x^2 \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx+\frac {2 \int \left (\frac {4 e^2 \left (1-\frac {33+2 e^4}{4 e^2}\right )}{\left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}+\frac {\left (-1+2 e^2\right ) x}{\left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}\right ) \, dx}{16-e^4}-\frac {\left (2 \left (1-2 e^2\right )\right ) \int \frac {1}{x \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\int \frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2} \, dx\\ &=2 \int \frac {1}{x^2 \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx-\frac {\left (2 \left (1-2 e^2\right )\right ) \int \frac {1}{x \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\frac {\left (2 \left (1-2 e^2\right )\right ) \int \frac {x}{\left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\frac {\left (2 \left (33-4 e^2+2 e^4\right )\right ) \int \frac {1}{\left (16-e^4-\left (1-2 e^2\right ) x-x^2\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\int \frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2} \, dx\\ &=2 \int \frac {1}{x^2 \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx-\frac {\left (2 \left (1-2 e^2\right )\right ) \int \left (\frac {1+\frac {1-2 e^2}{\sqrt {65-4 e^2}}}{\left (-1+2 e^2-\sqrt {65-4 e^2}-2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}+\frac {1-\frac {1-2 e^2}{\sqrt {65-4 e^2}}}{\left (-1+2 e^2+\sqrt {65-4 e^2}-2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}\right ) \, dx}{16-e^4}-\frac {\left (2 \left (1-2 e^2\right )\right ) \int \frac {1}{x \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\frac {\left (2 \left (33-4 e^2+2 e^4\right )\right ) \int \left (\frac {2}{\sqrt {65-4 e^2} \left (-1+2 e^2+\sqrt {65-4 e^2}-2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}+\frac {2}{\sqrt {65-4 e^2} \left (1-2 e^2+\sqrt {65-4 e^2}+2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )}\right ) \, dx}{16-e^4}-\int \frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2} \, dx\\ &=2 \int \frac {1}{x^2 \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx-\frac {\left (2 \left (1-2 e^2\right )\right ) \int \frac {1}{x \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\frac {\left (4 \left (33-4 e^2+2 e^4\right )\right ) \int \frac {1}{\left (-1+2 e^2+\sqrt {65-4 e^2}-2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{\sqrt {65-4 e^2} \left (16-e^4\right )}-\frac {\left (4 \left (33-4 e^2+2 e^4\right )\right ) \int \frac {1}{\left (1-2 e^2+\sqrt {65-4 e^2}+2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{\sqrt {65-4 e^2} \left (16-e^4\right )}-\frac {\left (2 \left (1-2 e^2\right ) \left (1-\frac {1-2 e^2}{\sqrt {65-4 e^2}}\right )\right ) \int \frac {1}{\left (-1+2 e^2+\sqrt {65-4 e^2}-2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\frac {\left (2 \left (1-2 e^2\right ) \left (1+\frac {1-2 e^2}{\sqrt {65-4 e^2}}\right )\right ) \int \frac {1}{\left (-1+2 e^2-\sqrt {65-4 e^2}-2 x\right ) \log \left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )} \, dx}{16-e^4}-\int \frac {\log \left (\log ^2\left (x \left (-16+e^4+\left (1-2 e^2\right ) x+x^2\right )\right )\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 1.14 \begin {gather*} \frac {\log \left (\log ^2\left (x \left (-16+e^4+x-2 e^2 x+x^2\right )\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 29, normalized size = 1.32 \begin {gather*} \frac {\log \left (\log \left (x^{3} - 2 \, x^{2} e^{2} + x^{2} + x e^{4} - 16 \, x\right )^{2}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 18.90, size = 29, normalized size = 1.32 \begin {gather*} \frac {\log \left (\log \left (x^{3} - 2 \, x^{2} e^{2} + x^{2} + x e^{4} - 16 \, x\right )^{2}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.14, size = 0, normalized size = 0.00 \[\int \frac {\left (-{\mathrm e}^{4}+2 \,{\mathrm e}^{2} x -x^{2}-x +16\right ) \ln \left (x \,{\mathrm e}^{4}-2 x^{2} {\mathrm e}^{2}+x^{3}+x^{2}-16 x \right ) \ln \left (\ln \left (x \,{\mathrm e}^{4}-2 x^{2} {\mathrm e}^{2}+x^{3}+x^{2}-16 x \right )^{2}\right )+2 \,{\mathrm e}^{4}-8 \,{\mathrm e}^{2} x +6 x^{2}+4 x -32}{\left (x^{2} {\mathrm e}^{4}-2 x^{3} {\mathrm e}^{2}+x^{4}+x^{3}-16 x^{2}\right ) \ln \left (x \,{\mathrm e}^{4}-2 x^{2} {\mathrm e}^{2}+x^{3}+x^{2}-16 x \right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 26, normalized size = 1.18 \begin {gather*} \frac {2 \, \log \left (\log \left (x^{2} - x {\left (2 \, e^{2} - 1\right )} + e^{4} - 16\right ) + \log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.99, size = 29, normalized size = 1.32 \begin {gather*} \frac {\ln \left ({\ln \left (x\,{\mathrm {e}}^4-16\,x-2\,x^2\,{\mathrm {e}}^2+x^2+x^3\right )}^2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.66, size = 29, normalized size = 1.32 \begin {gather*} \frac {\log {\left (\log {\left (x^{3} - 2 x^{2} e^{2} + x^{2} - 16 x + x e^{4} \right )}^{2} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________