Optimal. Leaf size=26 \[ \frac {e^{4-e^x-4 e^{-x} x} x}{5 \log (5)} \]
________________________________________________________________________________________
Rubi [F] time = 0.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x-e^{-x} \left (-4 e^x+e^{2 x}+4 x\right )} \left (e^x-4 x-e^{2 x} x+4 x^2\right )}{5 \log (5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-x-e^{-x} \left (-4 e^x+e^{2 x}+4 x\right )} \left (e^x-4 x-e^{2 x} x+4 x^2\right ) \, dx}{5 \log (5)}\\ &=\frac {\int e^{-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )} \left (e^x-4 x-e^{2 x} x+4 x^2\right ) \, dx}{5 \log (5)}\\ &=\frac {\int \left (\exp \left (x-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )\right )-4 e^{-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )} x-\exp \left (2 x-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )\right ) x+4 e^{-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )} x^2\right ) \, dx}{5 \log (5)}\\ &=\frac {\int \exp \left (x-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )\right ) \, dx}{5 \log (5)}-\frac {\int \exp \left (2 x-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )\right ) x \, dx}{5 \log (5)}-\frac {4 \int e^{-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )} x \, dx}{5 \log (5)}+\frac {4 \int e^{-e^{-x} \left (-4 e^x+e^{2 x}+4 x+e^x x\right )} x^2 \, dx}{5 \log (5)}\\ &=\frac {\int e^{4-e^x-4 e^{-x} x} \, dx}{5 \log (5)}-\frac {\int e^{4-e^x+x-4 e^{-x} x} x \, dx}{5 \log (5)}-\frac {4 \int e^{4-e^x-x-4 e^{-x} x} x \, dx}{5 \log (5)}+\frac {4 \int e^{4-e^x-x-4 e^{-x} x} x^2 \, dx}{5 \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 26, normalized size = 1.00 \begin {gather*} \frac {e^{4-e^x-4 e^{-x} x} x}{5 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 30, normalized size = 1.15 \begin {gather*} \frac {x e^{\left (-{\left ({\left (x - 4\right )} e^{x} + 4 \, x + e^{\left (2 \, x\right )}\right )} e^{\left (-x\right )} + x\right )}}{5 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 24, normalized size = 0.92 \begin {gather*} \frac {x e^{\left (-{\left (4 \, x + e^{\left (2 \, x\right )}\right )} e^{\left (-x\right )} + 4\right )}}{5 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 1.08
method | result | size |
norman | \(\frac {x \,{\mathrm e}^{-\left ({\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}+4 x \right ) {\mathrm e}^{-x}}}{5 \ln \relax (5)}\) | \(28\) |
risch | \(\frac {x \,{\mathrm e}^{\left (-{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}-4 x \right ) {\mathrm e}^{-x}}}{5 \ln \relax (5)}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 21, normalized size = 0.81 \begin {gather*} \frac {x e^{\left (-4 \, x e^{\left (-x\right )} - e^{x} + 4\right )}}{5 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.94, size = 22, normalized size = 0.85 \begin {gather*} \frac {x\,{\mathrm {e}}^4\,{\mathrm {e}}^{-4\,x\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{-{\mathrm {e}}^x}}{5\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 24, normalized size = 0.92 \begin {gather*} \frac {x e^{- \left (4 x + e^{2 x} - 4 e^{x}\right ) e^{- x}}}{5 \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________