Optimal. Leaf size=11 \[ \log \left (-5+2^{-4 x}+3 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3\ 2^{4 x}-4 \log (2)}{1+2^{4 x} (-5+3 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3}{-5+3 x}-\frac {3-20 \log (2)+12 x \log (2)}{(-5+3 x) \left (1-5\ 16^x+3\ 16^x x\right )}\right ) \, dx\\ &=\log (5-3 x)-\int \frac {3-20 \log (2)+12 x \log (2)}{(-5+3 x) \left (1-5\ 16^x+3\ 16^x x\right )} \, dx\\ &=\log (5-3 x)-\int \left (\frac {3}{(-5+3 x) \left (1-5\ 16^x+3\ 16^x x\right )}+\frac {\log (16)}{1-5\ 16^x+3\ 16^x x}\right ) \, dx\\ &=\log (5-3 x)-3 \int \frac {1}{(-5+3 x) \left (1-5\ 16^x+3\ 16^x x\right )} \, dx-\log (16) \int \frac {1}{1-5\ 16^x+3\ 16^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.12, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3\ 2^{4 x}-4 \log (2)}{1+2^{4 x} (-5+3 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 34, normalized size = 3.09 \begin {gather*} -4 \, x \log \relax (2) + \log \left (3 \, x - 5\right ) + \log \left (\frac {2^{4 \, x} {\left (3 \, x - 5\right )} + 1}{3 \, x - 5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \cdot 2^{4 \, x} - 4 \, \log \relax (2)}{2^{4 \, x} {\left (3 \, x - 5\right )} + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 2.27
method | result | size |
risch | \(\ln \left (3 x -5\right )-4 x \ln \relax (2)+\ln \left (16^{x}+\frac {1}{3 x -5}\right )\) | \(25\) |
norman | \(-4 x \ln \relax (2)+\ln \left (3 \,{\mathrm e}^{4 x \ln \relax (2)} x -5 \,{\mathrm e}^{4 x \ln \relax (2)}+1\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 34, normalized size = 3.09 \begin {gather*} -4 \, x \log \relax (2) + \log \left (3 \, x - 5\right ) + \log \left (\frac {2^{4 \, x} {\left (3 \, x - 5\right )} + 1}{3 \, x - 5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 24, normalized size = 2.18 \begin {gather*} \ln \left (3\,2^{4\,x}\,x-5\,2^{4\,x}+1\right )-4\,x\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 29, normalized size = 2.64 \begin {gather*} - 4 x \log {\relax (2 )} + \log {\left (3 x - 5 \right )} + \log {\left (e^{4 x \log {\relax (2 )}} + \frac {1}{3 x - 5} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________