Optimal. Leaf size=18 \[ \frac {4 e^{1-e+x-x^2}}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 32, normalized size of antiderivative = 1.78, number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 2288} \begin {gather*} \frac {4 e^{-x^2+x-e+1} \left (x-2 x^2\right )}{(1-2 x) x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 \int \frac {e^{1-e+x-x^2} \left (-1+x-2 x^2\right )}{x^2} \, dx\\ &=\frac {4 e^{1-e+x-x^2} \left (x-2 x^2\right )}{(1-2 x) x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 1.00 \begin {gather*} \frac {4 e^{1-e+x-x^2}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 21, normalized size = 1.17 \begin {gather*} \frac {e^{\left (-x^{2} + x - e + 2 \, \log \relax (2) + 1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 18, normalized size = 1.00 \begin {gather*} \frac {4 \, e^{\left (-x^{2} + x - e + 1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 1.06
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{1-{\mathrm e}-x^{2}+x}}{x}\) | \(19\) |
gosper | \(\frac {{\mathrm e}^{2 \ln \relax (2)-{\mathrm e}-x^{2}+x +1}}{x}\) | \(22\) |
norman | \(\frac {{\mathrm e}^{2 \ln \relax (2)-{\mathrm e}-x^{2}+x +1}}{x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -4 \, \sqrt {\pi } \operatorname {erf}\left (x - \frac {1}{2}\right ) e^{\left (-e + \frac {5}{4}\right )} + 4 \, \int \frac {{\left (x e - e\right )} e^{\left (-x^{2} + x - e\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 20, normalized size = 1.11 \begin {gather*} \frac {4\,{\mathrm {e}}^{-\mathrm {e}}\,\mathrm {e}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^x}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.78 \begin {gather*} \frac {4 e^{- x^{2} + x - e + 1}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________