Optimal. Leaf size=21 \[ 4+\log \left (\log \left (4+\frac {x}{\left (1+2 e^x\right )^2}+x \log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 17.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+12 e^{2 x}+8 e^{3 x}+e^x (8-4 x)+\left (1+6 e^x+12 e^{2 x}+8 e^{3 x}\right ) \log (x)}{\left (4+48 e^{2 x}+32 e^{3 x}+x+e^x (24+2 x)+\left (x+6 e^x x+12 e^{2 x} x+8 e^{3 x} x\right ) \log (x)\right ) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (x+4 e^x x+4 e^{2 x} x\right ) \log (x)}{1+4 e^x+4 e^{2 x}}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+12 e^{2 x}+8 e^{3 x}-4 e^x (-2+x)+\left (1+2 e^x\right )^3 \log (x)}{\left (1+2 e^x\right ) \left (4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)\right ) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )} \, dx\\ &=\int \left (\frac {2}{\left (1+2 e^x\right ) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )}+\frac {1+\log (x)}{(4+x \log (x)) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )}-\frac {28+64 e^x+9 x+16 x \log (x)+32 e^x x \log (x)+2 x^2 \log (x)+2 x^2 \log ^2(x)+4 e^x x^2 \log ^2(x)}{(4+x \log (x)) \left (4+16 e^x+16 e^{2 x}+x+x \log (x)+4 e^x x \log (x)+4 e^{2 x} x \log (x)\right ) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )}\right ) \, dx\\ &=2 \int \frac {1}{\left (1+2 e^x\right ) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )} \, dx+\int \frac {1+\log (x)}{(4+x \log (x)) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )} \, dx-\int \frac {28+64 e^x+9 x+16 x \log (x)+32 e^x x \log (x)+2 x^2 \log (x)+2 x^2 \log ^2(x)+4 e^x x^2 \log ^2(x)}{(4+x \log (x)) \left (4+16 e^x+16 e^{2 x}+x+x \log (x)+4 e^x x \log (x)+4 e^{2 x} x \log (x)\right ) \log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 40, normalized size = 1.90 \begin {gather*} \log \left (\log \left (\frac {4+16 e^x+16 e^{2 x}+x+\left (1+2 e^x\right )^2 x \log (x)}{\left (1+2 e^x\right )^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 47, normalized size = 2.24 \begin {gather*} \log \left (\log \left (\frac {{\left (4 \, x e^{\left (2 \, x\right )} + 4 \, x e^{x} + x\right )} \log \relax (x) + x + 16 \, e^{\left (2 \, x\right )} + 16 \, e^{x} + 4}{4 \, e^{\left (2 \, x\right )} + 4 \, e^{x} + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 47, normalized size = 2.24 \begin {gather*} \log \left (-\log \left (4 \, x e^{\left (2 \, x\right )} \log \relax (x) + 4 \, x e^{x} \log \relax (x) + x \log \relax (x) + x + 16 \, e^{\left (2 \, x\right )} + 16 \, e^{x} + 4\right ) + 2 \, \log \left (2 \, e^{x} + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 385, normalized size = 18.33
method | result | size |
risch | \(\ln \left (\ln \left (\left (\ln \relax (x ) {\mathrm e}^{2 x}+{\mathrm e}^{x} \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {1}{4}\right ) x +4 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}+1\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{\left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}}\right ) \mathrm {csgn}\left (i \left (\left (\ln \relax (x ) {\mathrm e}^{2 x}+{\mathrm e}^{x} \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {1}{4}\right ) x +4 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}+1\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x ) {\mathrm e}^{2 x}+{\mathrm e}^{x} \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {1}{4}\right ) x +4 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}+1\right )}{\left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{\left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x ) {\mathrm e}^{2 x}+{\mathrm e}^{x} \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {1}{4}\right ) x +4 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}+1\right )}{\left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}}\right )^{2}-\pi \mathrm {csgn}\left (i \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right )^{2} \mathrm {csgn}\left (i \left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (i \left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i \left (\left (\ln \relax (x ) {\mathrm e}^{2 x}+{\mathrm e}^{x} \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {1}{4}\right ) x +4 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}+1\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x ) {\mathrm e}^{2 x}+{\mathrm e}^{x} \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {1}{4}\right ) x +4 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}+1\right )}{\left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x ) {\mathrm e}^{2 x}+{\mathrm e}^{x} \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {1}{4}\right ) x +4 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x}+1\right )}{\left (\frac {1}{2}+{\mathrm e}^{x}\right )^{2}}\right )^{3}-4 i \ln \left (\frac {1}{2}+{\mathrm e}^{x}\right )\right )}{2}\right )\) | \(385\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 17.87, size = 42, normalized size = 2.00 \begin {gather*} \log \left (\log \left ({\left (4 \, x e^{\left (2 \, x\right )} + 4 \, x e^{x} + x\right )} \log \relax (x) + x + 16 \, e^{\left (2 \, x\right )} + 16 \, e^{x} + 4\right ) - 2 \, \log \left (2 \, e^{x} + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.24, size = 51, normalized size = 2.43 \begin {gather*} \ln \left (\ln \left (x+16\,{\mathrm {e}}^{2\,x}+16\,{\mathrm {e}}^x+x\,\ln \relax (x)+4\,x\,{\mathrm {e}}^x\,\ln \relax (x)+4\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)+4\right )-\ln \left (4\,{\mathrm {e}}^{2\,x}+4\,{\mathrm {e}}^x+1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 7.69, size = 51, normalized size = 2.43 \begin {gather*} \log {\left (\log {\left (\frac {x + \left (4 x e^{2 x} + 4 x e^{x} + x\right ) \log {\relax (x )} + 16 e^{2 x} + 16 e^{x} + 4}{4 e^{2 x} + 4 e^{x} + 1} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________