Optimal. Leaf size=32 \[ x-\frac {1}{4} e^{-1-\frac {2-x}{3-e^{x^2}+x}} x^2 \]
________________________________________________________________________________________
Rubi [F] time = 11.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9 x+e^{2 x^2} x+6 x^2+x^3+e^{x^2} \left (-6 x-2 x^2\right )+\exp \left (\frac {5-e^{x^2}+\left (-3+e^{x^2}-x\right ) \log \left (\frac {x^2}{4}\right )}{-3+e^{x^2}-x}\right ) \left (-18-2 e^{2 x^2}-17 x-2 x^2+e^{x^2} \left (12+5 x+4 x^2-2 x^3\right )\right )}{9 x+e^{2 x^2} x+6 x^2+x^3+e^{x^2} \left (-6 x-2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 x+e^{2 x^2} x+6 x^2+x^3-2 e^{x^2} x (3+x)-\frac {1}{4} e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2 \left (18+2 e^{2 x^2}+17 x+2 x^2+e^{x^2} \left (-12-5 x-4 x^2+2 x^3\right )\right )}{x \left (3-e^{x^2}+x\right )^2} \, dx\\ &=\int \left (\frac {1}{2} e^{-\frac {e^{x^2}}{-3+e^{x^2}-x}} \left (2 e^{\frac {e^{x^2}}{-3+e^{x^2}-x}}-e^{\frac {5}{-3+e^{x^2}-x}} x\right )+\frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2 \left (-1-4 x+2 x^2\right )}{4 \left (3-e^{x^2}+x\right )}+\frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2 \left (-2+13 x-2 x^2-2 x^3\right )}{4 \left (3-e^{x^2}+x\right )^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2 \left (-1-4 x+2 x^2\right )}{3-e^{x^2}+x} \, dx+\frac {1}{4} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2 \left (-2+13 x-2 x^2-2 x^3\right )}{\left (3-e^{x^2}+x\right )^2} \, dx+\frac {1}{2} \int e^{-\frac {e^{x^2}}{-3+e^{x^2}-x}} \left (2 e^{\frac {e^{x^2}}{-3+e^{x^2}-x}}-e^{\frac {5}{-3+e^{x^2}-x}} x\right ) \, dx\\ &=\frac {1}{4} \int \left (-\frac {2 e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2}{\left (-3+e^{x^2}-x\right )^2}+\frac {13 e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^3}{\left (-3+e^{x^2}-x\right )^2}-\frac {2 e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^4}{\left (-3+e^{x^2}-x\right )^2}-\frac {2 e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^5}{\left (-3+e^{x^2}-x\right )^2}\right ) \, dx+\frac {1}{4} \int \left (-\frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2}{3-e^{x^2}+x}-\frac {4 e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^3}{3-e^{x^2}+x}+\frac {2 e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^4}{3-e^{x^2}+x}\right ) \, dx+\frac {1}{2} \int \left (2-e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x\right ) \, dx\\ &=x-\frac {1}{4} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2}{3-e^{x^2}+x} \, dx-\frac {1}{2} \int e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x \, dx-\frac {1}{2} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^2}{\left (-3+e^{x^2}-x\right )^2} \, dx-\frac {1}{2} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^4}{\left (-3+e^{x^2}-x\right )^2} \, dx-\frac {1}{2} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^5}{\left (-3+e^{x^2}-x\right )^2} \, dx+\frac {1}{2} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^4}{3-e^{x^2}+x} \, dx+\frac {13}{4} \int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^3}{\left (-3+e^{x^2}-x\right )^2} \, dx-\int \frac {e^{-\frac {-5+e^{x^2}}{-3+e^{x^2}-x}} x^3}{3-e^{x^2}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 31, normalized size = 0.97 \begin {gather*} x-\frac {1}{4} e^{-1+\frac {2-x}{-3+e^{x^2}-x}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 39, normalized size = 1.22 \begin {gather*} x - e^{\left (\frac {{\left (x - e^{\left (x^{2}\right )} + 3\right )} \log \left (\frac {1}{4} \, x^{2}\right ) + e^{\left (x^{2}\right )} - 5}{x - e^{\left (x^{2}\right )} + 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 5.79, size = 33, normalized size = 1.03 \begin {gather*} -\frac {1}{4} \, x^{2} e^{\left (\frac {5 \, x - 2 \, e^{\left (x^{2}\right )}}{3 \, {\left (x - e^{\left (x^{2}\right )} + 3\right )}} - \frac {5}{3}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.25, size = 223, normalized size = 6.97
method | result | size |
risch | \(x -{\mathrm e}^{-\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}+3 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+3 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}-i {\mathrm e}^{x^{2}} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-6 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i {\mathrm e}^{x^{2}} \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2 i {\mathrm e}^{x^{2}} \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+4 \,{\mathrm e}^{x^{2}} \ln \relax (x )-4 x \ln \relax (x )-4 \ln \relax (2) {\mathrm e}^{x^{2}}+4 x \ln \relax (2)-12 \ln \relax (x )+12 \ln \relax (2)-2 \,{\mathrm e}^{x^{2}}+10}{2 \left (x +3-{\mathrm e}^{x^{2}}\right )}}\) | \(223\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \int \frac {{\left (2 \, x^{3} + 17 \, x^{2} + 2 \, x e^{\left (2 \, x^{2}\right )} + {\left (2 \, x^{4} - 4 \, x^{3} - 5 \, x^{2} - 12 \, x\right )} e^{\left (x^{2}\right )} + 18 \, x\right )} e^{\left (\frac {e^{\left (x^{2}\right )}}{x - e^{\left (x^{2}\right )} + 3} - \frac {5}{x - e^{\left (x^{2}\right )} + 3}\right )}}{4 \, {\left (x^{2} - 2 \, {\left (x + 3\right )} e^{\left (x^{2}\right )} + 6 \, x + e^{\left (2 \, x^{2}\right )} + 9\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.09, size = 145, normalized size = 4.53 \begin {gather*} x-\frac {2^{\frac {2\,{\mathrm {e}}^{x^2}}{x-{\mathrm {e}}^{x^2}+3}}\,{\mathrm {e}}^{-\frac {5}{x-{\mathrm {e}}^{x^2}+3}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{x^2}}{x-{\mathrm {e}}^{x^2}+3}}\,{\left (x^2\right )}^{\frac {3}{x-{\mathrm {e}}^{x^2}+3}}\,{\left (x^2\right )}^{\frac {x}{x-{\mathrm {e}}^{x^2}+3}}}{2^{\frac {2\,x}{x-{\mathrm {e}}^{x^2}+3}}\,2^{\frac {6}{x-{\mathrm {e}}^{x^2}+3}}\,{\left (x^2\right )}^{\frac {{\mathrm {e}}^{x^2}}{x-{\mathrm {e}}^{x^2}+3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.29, size = 32, normalized size = 1.00 \begin {gather*} x - e^{\frac {\left (- x + e^{x^{2}} - 3\right ) \log {\left (\frac {x^{2}}{4} \right )} - e^{x^{2}} + 5}{- x + e^{x^{2}} - 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________