Optimal. Leaf size=20 \[ 5+e^{e^x}+e^{\frac {144 x}{5 (-4+\log (x))^2}} \]
________________________________________________________________________________________
Rubi [A] time = 1.27, antiderivative size = 21, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 7, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {6741, 12, 6688, 6742, 2282, 2194, 6706} \begin {gather*} e^{e^x}+e^{\frac {144 x}{5 (4-\log (x))^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 6688
Rule 6706
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{\frac {144 x}{80-40 \log (x)+5 \log ^2(x)}} (-864+144 \log (x))-e^{e^x} \left (-320 e^x+240 e^x \log (x)-60 e^x \log ^2(x)+5 e^x \log ^3(x)\right )}{5 (4-\log (x))^3} \, dx\\ &=\frac {1}{5} \int \frac {-e^{\frac {144 x}{80-40 \log (x)+5 \log ^2(x)}} (-864+144 \log (x))-e^{e^x} \left (-320 e^x+240 e^x \log (x)-60 e^x \log ^2(x)+5 e^x \log ^3(x)\right )}{(4-\log (x))^3} \, dx\\ &=\frac {1}{5} \int \frac {-144 e^{\frac {144 x}{5 (-4+\log (x))^2}} (-6+\log (x))-5 e^{e^x+x} (-4+\log (x))^3}{(4-\log (x))^3} \, dx\\ &=\frac {1}{5} \int \left (5 e^{e^x+x}+\frac {144 e^{\frac {144 x}{5 (-4+\log (x))^2}} (-6+\log (x))}{(-4+\log (x))^3}\right ) \, dx\\ &=\frac {144}{5} \int \frac {e^{\frac {144 x}{5 (-4+\log (x))^2}} (-6+\log (x))}{(-4+\log (x))^3} \, dx+\int e^{e^x+x} \, dx\\ &=e^{\frac {144 x}{5 (4-\log (x))^2}}+\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=e^{e^x}+e^{\frac {144 x}{5 (4-\log (x))^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 27, normalized size = 1.35 \begin {gather*} \frac {1}{5} \left (5 e^{e^x}+5 e^{\frac {144 x}{5 (-4+\log (x))^2}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 20, normalized size = 1.00 \begin {gather*} e^{\left (\frac {144 \, x}{5 \, {\left (\log \relax (x)^{2} - 8 \, \log \relax (x) + 16\right )}}\right )} + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 20, normalized size = 1.00 \begin {gather*} e^{\left (\frac {144 \, x}{5 \, {\left (\log \relax (x)^{2} - 8 \, \log \relax (x) + 16\right )}}\right )} + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 15, normalized size = 0.75
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{\frac {144 x}{5 \left (\ln \relax (x )-4\right )^{2}}}\) | \(15\) |
default | \(\frac {-40 \ln \relax (x ) {\mathrm e}^{\frac {144 x}{5 \ln \relax (x )^{2}-40 \ln \relax (x )+80}}+5 \ln \relax (x )^{2} {\mathrm e}^{\frac {144 x}{5 \ln \relax (x )^{2}-40 \ln \relax (x )+80}}+80 \,{\mathrm e}^{\frac {144 x}{5 \ln \relax (x )^{2}-40 \ln \relax (x )+80}}}{5 \left (\ln \relax (x )-4\right )^{2}}+{\mathrm e}^{{\mathrm e}^{x}}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 20, normalized size = 1.00 \begin {gather*} e^{\left (\frac {144 \, x}{5 \, {\left (\log \relax (x)^{2} - 8 \, \log \relax (x) + 16\right )}}\right )} + e^{\left (e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.23, size = 22, normalized size = 1.10 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^{\frac {144\,x}{5\,{\ln \relax (x)}^2-40\,\ln \relax (x)+80}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.21, size = 22, normalized size = 1.10 \begin {gather*} e^{\frac {144 x}{5 \log {\relax (x )}^{2} - 40 \log {\relax (x )} + 80}} + e^{e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________