Optimal. Leaf size=29 \[ \frac {4 \log (3)}{\log \left (x^2 \left (x+\frac {4}{\log \left (\frac {x}{3}\right )}-\log (x)\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32 \log (3)+32 \log (3) \log \left (\frac {x}{3}\right )+(-8+16 x) \log (3) \log ^2\left (\frac {x}{3}\right )-8 \log (3) \log ^2\left (\frac {x}{3}\right ) \log (x)}{\left (-4 x \log \left (\frac {x}{3}\right )-x^2 \log ^2\left (\frac {x}{3}\right )+x \log ^2\left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {16 x^2+8 x^3 \log \left (\frac {x}{3}\right )+x^4 \log ^2\left (\frac {x}{3}\right )+\left (-8 x^2 \log \left (\frac {x}{3}\right )-2 x^3 \log ^2\left (\frac {x}{3}\right )\right ) \log (x)+x^2 \log ^2\left (\frac {x}{3}\right ) \log ^2(x)}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \log (3) \left (4 (1+\log (3))-4 \log (x)+\log ^2\left (\frac {x}{3}\right ) (1-2 x+\log (x))\right )}{x \log \left (\frac {x}{3}\right ) \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx\\ &=(8 \log (3)) \int \frac {4 (1+\log (3))-4 \log (x)+\log ^2\left (\frac {x}{3}\right ) (1-2 x+\log (x))}{x \log \left (\frac {x}{3}\right ) \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx\\ &=(8 \log (3)) \int \left (\frac {4 (1+\log (3))}{x \log \left (\frac {x}{3}\right ) \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )}-\frac {2 \log \left (\frac {x}{3}\right )}{\left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )}+\frac {\log \left (\frac {x}{3}\right )}{x \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )}-\frac {4 \log (x)}{x \log \left (\frac {x}{3}\right ) \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )}+\frac {\log \left (\frac {x}{3}\right ) \log (x)}{x \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )}\right ) \, dx\\ &=(8 \log (3)) \int \frac {\log \left (\frac {x}{3}\right )}{x \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx+(8 \log (3)) \int \frac {\log \left (\frac {x}{3}\right ) \log (x)}{x \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx-(16 \log (3)) \int \frac {\log \left (\frac {x}{3}\right )}{\left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx-(32 \log (3)) \int \frac {\log (x)}{x \log \left (\frac {x}{3}\right ) \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx+(32 \log (3) (1+\log (3))) \int \frac {1}{x \log \left (\frac {x}{3}\right ) \left (4+x \log \left (\frac {x}{3}\right )-\log \left (\frac {x}{3}\right ) \log (x)\right ) \log ^2\left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 94, normalized size = 3.24 \begin {gather*} \frac {4 \log (3) \left (-4-\log (81)+\log ^2\left (\frac {x}{3}\right ) (-1+2 x-\log (x))+4 \log (x)\right )}{\left (-4+4 \log \left (\frac {x}{3}\right )+\log ^2\left (\frac {x}{3}\right ) (-1+2 x-\log (x))\right ) \log \left (\frac {x^2 \left (4+\log \left (\frac {x}{3}\right ) (x-\log (x))\right )^2}{\log ^2\left (\frac {x}{3}\right )}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 97, normalized size = 3.34 \begin {gather*} \frac {4 \, \log \relax (3)}{\log \left (\frac {x^{2} \log \left (\frac {1}{3} \, x\right )^{4} - 2 \, {\left (x^{3} - x^{2} \log \relax (3)\right )} \log \left (\frac {1}{3} \, x\right )^{3} + {\left (x^{4} - 2 \, x^{3} \log \relax (3) + x^{2} \log \relax (3)^{2} - 8 \, x^{2}\right )} \log \left (\frac {1}{3} \, x\right )^{2} + 16 \, x^{2} + 8 \, {\left (x^{3} - x^{2} \log \relax (3)\right )} \log \left (\frac {1}{3} \, x\right )}{\log \left (\frac {1}{3} \, x\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.31, size = 1028, normalized size = 35.45
method | result | size |
risch | \(\frac {8 i \ln \relax (3)}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right ) \mathrm {csgn}\left (i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )^{2}-\pi \mathrm {csgn}\left (i \left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}\right )^{3}+\pi \mathrm {csgn}\left (i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )\right )^{2} \mathrm {csgn}\left (i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )\right ) \mathrm {csgn}\left (i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x^{2} \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )^{2}}{\left (2 i \ln \relax (3)-2 i \ln \relax (x )\right )^{2}}\right )^{3}+4 i \ln \left (-2 i x \ln \relax (3)+2 i \ln \relax (3) \ln \relax (x )+2 i x \ln \relax (x )-2 i \ln \relax (x )^{2}+8 i\right )+4 i \ln \relax (x )-4 i \ln \left (-2 i \ln \relax (3)+2 i \ln \relax (x )\right )}\) | \(1028\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 38, normalized size = 1.31 \begin {gather*} \frac {2 \, \log \relax (3)}{\log \left (x \log \relax (3) - {\left (x + \log \relax (3)\right )} \log \relax (x) + \log \relax (x)^{2} - 4\right ) + \log \relax (x) - \log \left (-\log \relax (3) + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.28, size = 78, normalized size = 2.69 \begin {gather*} \frac {4\,\ln \relax (3)}{\ln \left (\frac {8\,x^3\,\ln \left (\frac {x}{3}\right )+16\,x^2+x^4\,{\ln \left (\frac {x}{3}\right )}^2-\ln \relax (x)\,\left (2\,x^3\,{\ln \left (\frac {x}{3}\right )}^2+8\,x^2\,\ln \left (\frac {x}{3}\right )\right )+x^2\,{\ln \left (\frac {x}{3}\right )}^2\,{\ln \relax (x)}^2}{{\ln \left (\frac {x}{3}\right )}^2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.29, size = 90, normalized size = 3.10 \begin {gather*} \frac {4 \log {\relax (3 )}}{\log {\left (\frac {x^{4} \left (\log {\relax (x )} - \log {\relax (3 )}\right )^{2} + 8 x^{3} \left (\log {\relax (x )} - \log {\relax (3 )}\right ) + x^{2} \left (\log {\relax (x )} - \log {\relax (3 )}\right )^{2} \log {\relax (x )}^{2} + 16 x^{2} + \left (- 2 x^{3} \left (\log {\relax (x )} - \log {\relax (3 )}\right )^{2} - 8 x^{2} \left (\log {\relax (x )} - \log {\relax (3 )}\right )\right ) \log {\relax (x )}}{\left (\log {\relax (x )} - \log {\relax (3 )}\right )^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________